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Y (RBFNN) have proved helpful in identifying benign and aggressive 
tumours [8-10]. RBFNN stands out for its easiness, rapid conver-
gence, and competence in pattern recognition [10,11]. However, 
its performance may diminish as the input dimension expands, 
due to processing issues [12]. In contrast, Support Vector Machine 
(SVM) has appeared as a promising tool for data categorization, 
particularly in high-dimensional feature spaces [13].

To manage the difficulties produced by high-dimensional datasets, 
dimensionality reduction methods like Principal Component Anal-
ysis (PCA) and Independent Component Analysis (ICA) have been 
utilised [14,15]. ICA, applying higher order statistics, isolates inde-
pendent components with more information than PCA, minimis-
ing data dimensionality while boosting classifier performance and 
convergence time [12,16,17].

This research focused on studying how ICA-based feature reduc-
tion influences breast cancer categorization as benign or aggressive. 
The WDBC dataset is transformed into a one-dimensional feature 
vector using ICA. k-NN, ANN, RBFNN, and SVM models are 
trained and graded using 5/10-fold cross-validation and 20% split-
ting. Performance metrics, including accuracy, specificity, sensitiv-
ity, F-score, Youden’s index, and discriminant power, are generated 
and illustrated using Receiver Operating Characteristic (ROC) 
graphs to compare the models.

The study’s technique contains an introduction of the dataset, ICA, 
k-NN, ANN, RBFNN, SVM, and performance measures in Part 
2. Section 3 outlines the approach adopted. Sections 4 to 5 present 
and appraise the experiment’s results. The investigation finishes in 
Section 6.

In conclusion, the research seeks to explain opinions on the utility 
of ICA in decreasing feature dimensions for breast cancer classifica-
tion. By blending machine learning with dimensionality reduction 
approaches, this effort seeks to boost early detection and diagnostic 
accuracy, ultimately leading to better breast cancer outcomes.

MATERIALS AND METHODS

Data overview 

The WDBC collection consists of 569 samples, with 357 being 
normal and 212 malignant. Each sample is tagged with a unique 
number, a description (B=normal, M=malignancy), and 30 char-
acteristics. Figure 1 depicts features extracted from a digitally en-
hanced breast mass Fine Needle Aspirate (FNA) picture. 

The mean, standard error, and “worst” values of 10 properties were 
computed for each cell nucleus, resulting in 30 features [18].

OIn this work, we will evaluate the impact of Independent Component Analysis 
(ICA) on a breast cancer decision support system’s feature reduction capabilities. 
The Wisconsin Diagnostic Breast Cancer (WDBC) dataset will be utilised to con-
struct a one-dimensional feature vector (IC). We will study the performance of 
k-NN, ANN, RBFNN, and SVM classifiers in spotting mistakes using the original 30 
features. Additionally, we will compare the IC-recommended classification with 
the original feature set using multiple validation and division approaches. The 
classifiers will be tested based on specificity, sensitivity, accuracy, F-score, Youden’s 
index, discriminant power, and Receiver Operating Characteristic (ROC) curve. This 
effort attempts to boost the medical decision support system’s efficiency while 
minimising computational complexity.

Key words: Independent Component Analysis (ICA), breast cancer decision sup-
port system, feature reduction, Wisconsin Diagnostic Breast Cancer (WDBC) data-
set, one-dimensional feature vector, original 30 features, ic-recommended classi-
fication, validation, division approaches, specificity, sensitivity, accuracy, f-score, 
youden’s index, discriminant power, Receiver Operating Characteristic (ROC) 
curve, medical decision support system, computational complexity, efficiency im-
provement

INTRODUCTION

Breast cancer is a leading cause of mortality among women [1], 
underlining the significance of effective diagnostics for early detec-
tion and treatment. However, present diagnostic procedures largely 
rely on the competency of physicians and physical tests, leaving 
them prone to errors [2]. As people may cope with ambiguous as-
sessments, automated breast cancer screening applying machine 
learning has developed as a practical technique to enhance diagnos-
tic accuracy [3-5]. A study comparing machine learning with hu-
man analysis found that machine learning obtained an accuracy of 
91.1%, topping even the highly trained physicians at 79.97% [6].

Breast tumours are categorised as benign or malignant, with malig-
nant tumors presenting a serious hazard to life [7]. Artificial Neu-
ral Networks (ANN) and Radial Basis Function Neural Networks 
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Fig. 1. Breast Fine-Needle Aspiration (FNA) biopsies can diagnose both malig-
nant (a) and benign (b) breast cancers [24]. 

Blind source separation

e.g., In the ICA model, the observed signal is a linear combination 
of two independently distributed sources. 

x As=  

In the ICA framework, the observed signal vector x is regarded to 
be a linear mixture of two independent source signals represented 
by vector s, and the mixing matrix A holds the unknown mixing 
coefficients. After estimating A via ICA, the separation matrix W is 
generated as the inverse of A. By applying W to the detected signal, 
one may obtain the original source signals. 

Ŝ Wx=  

To construct Independent Components (ICs), the data is centered 
by subtracting the mean values of variables (similar to PCA). The 
next step is whitening, which makes the data uncorrelated and each 
variable has a variance of one. Unlike PCA, which gives eigenvec-
tors for decorrelated data, ICs are obtained via a linear transforma-
tion on the uncorrelated data Table 1. 

Tab. 1. For every 
cell nucleus, a set of 
numerical attributes 
has been calculated.

SNO 10 Real-world advantages

1 Radius (Mean of distances from center to 
points on the perimeter)

2 Texture ( Standard deviation of grey-scale 
values)

3 Perimeter

4 Area

5 Smoothness(local variation in radius lengths)

6 Compactness (perimeter2/area-1.0)

7 Concavity(severity of concave portions of the 
contour)

8 Concave points(number of concave portions 
of the contour)

9 Symmetry

10 Fractal dimension ("coastline approxima-
tion"-1)

T
i iic b x=  

In this study, the Independent Component (IC) is denoted as “ic,” 
and the vector necessary to construct it is marked as “b.” To com-
pute the vector “b,” a variable independence-linked objective func-
tion is applied. The FASTICA approach, known for its adaptability 
and interactive qualities, is utilised to compute the ICs in this work 
[19].

Deep learning networks

The Feedforward Neural Network (FFNN) is often applied in nu-
merous applications thanks to its simplicity of mathematical anal-
ysis and good representation capabilities [20,21]. It has demon-

strated to be effective in control, signal processing, and pattern 
recognition applications. 

In Figure 2, the FFNN architecture is depicted, with N showing 
the total number of input patterns and M representing the total 
number of neurons in the hidden layer. Neurons in the hidden 
layer examine weighted inputs from the previous layer and pass 
outputs to neurons in the next layer in the FFNN architecture.

Fig. 2. The structural design of a feedforward neural network.
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In the Feedforward Neural Network (FFNN), the system output, 
known as yout, is created using a nonlinear activation function 
f(ynet). The output ynet is the sum of weighted inputs from the 
input neurons, where wi specifies the weight of each input neuron 
xi. Additionally, w0 represents the bias term. The observed neural 
network output value is represented as yobs. The error between the 
network result and the output value is represented as E [22]. 

A Radial Basis Function Neural Network (RBFNN) consists of 
three layers, like a feedforward architecture, however the hidden 
layer is known as the radial basis layer and largely uses Gaussian 
functions. Each neuron in the buried layer is characterised by a 
Radial Basis Function (RBF) centered on a given location. During 
training, the centers and dispersion of these RBFs are calculated. 
To compute the output, a hidden neuron calculates the Euclidean 
distance between the input vector and the center point of the RBF, 
and then applies the RBF kernel function based on the distance 
using the spread value. This method allows the RBFNN to learn 
and articulate intricate patterns in the data [23-27].

Kernel machine (SVM)

SVM, a supervised learning method, is used for data regression and 
classification. It was proposed by Boser and Vapnik [28,29]. The 
SVM technique tries to generate a hyperplane that can differentiate 
classes with minimal training error and maximum margin, enhanc-
ing its generalization ability.

For datasets that can be linearly partitioned, a linear SVM approach 
is suitable. The objective is to maximize the distance between class-
es. Support vectors are the data points on the edges of the margin, 
illustrated by the dotted lines in Figure 3.  

© Oncology and Radiotherapy 18 (S1)2024: 01-13
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Fig. 3. A separating boundary in support vector machine. 
Note: ( )0.0; ( )1.0.

The discriminant function for the hyperplane, denoted as g(x), is 
given by 

( ) Tg x w x b= +
Where w represents the coefficient vector, b is the offset from the 
origin, and x denotes the data points. For a data point on one class, 
g(x) equals 0, while for the nearest point on the other class, g(x) 
equals 0. The support vectors, located on the separating hyper-
plane, areee cost function should be minimized while maximizing  
(2/ 2)∧＼w＼ . 

21( )
2

J w W= ＼ ＼

{ }(w )  1i 1,2,...,n  and  y 1, 1T
i ii x b

y
+ ≥ = = + -

This is a quadratic optimization problem with linear inequality 
constraints. The Lagrange function is identified using the Karush-
Kuhn-Tucker (KKT) criterion [30].

{ }2

1

1(w, b, ) ( 1
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n
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iP i i
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To attain the ideal values of w and b, where I are lagrange mul-
tipliers, Lp must be decreased. The following is the optimization 
equation: 

1 . 1

1Maximize = 
2

n n
T

i i j i j j j
i i j

y y x xα α α
= =

 
- 

 
∑ ∑

Indeed, the kernel technique is a powerful strategy that allows SVM 
to solve nonlinear classification challenges. By utilising a kernel 
function, the data points are transported to a higher-dimensional 
space (denoted by Φ(X)), where a linear hyperplane may separate 
the classes. The new discriminant function, g(x), is expressed as

(( )) XTg x W bΦ= +

Where W denotes the coefficient vector in the higher-dimensional 
space, and b is the offset from the origin. This method, SVM may 
efficiently classify data that may not be linearly separable in the 
original feature space Table 2.

Tab. 2. A contingency table 
used for evaluating the 
performance of a Two-class 
classification model.

Actual value/ 
Recognized 

value

Positive Negative

Positive TP FN

Negative FP TN

The optimization equation combines mapping input vectors to ker-
nel space X with Φ(𝑋).

1 . 1

1Maximize = ( , )
2

n n

i i j i j i j
i i j

y y K x xα α α
= =

 
- 

 
∑ ∑

The kernel function K(xi, xj) includes the values Φ(xi) and Φ(xj), 
where Φ denotes the mapping to kernel space. Common kernel 
functions include RBFs and polynomials.

Performance measures 

Various techniques exist to examine a classifier’s effectiveness. The 
confusion matrix illustrates correct and inaccurate classifications, 
with TP, TN, FP, and FN denoting different findings. Classifier ac-
curacy, typically utilised, is calculated as 

 + TNAccuracy = 
 + TN + FP + FN

TP
TP  

displaying the proportion of correct projections. Sensitivity (TPR) 
shows the classifier’s capacity to distinguish positive examples, 
while specificity (TNR) examines its skill to recognise negative 
instances. F-score combines accuracy and recall, whereas Youden’s 
index analyses both sensitivity and specificity [31].Receiver Oper-
ating Characteristic (ROC) curves analyse performance over several 
thresholds, and the Area Under the Curve (AUC) represents overall 
performance.

Sensitivity checks the proper identification of actual positives, 
whereas specificity rates the detection of true negatives. 

Sensitivity = 
TP + FN

TP

Specificity = 
TN + FP

TN
 

The F-score analyses measure accuracy by balancing precision and 
recall. It tests the classifier’s accuracy and memory performance. 
When the F-score is 1, accuracy and recall are equally relevant. If it’s 
1, recall is emphasised, and if it’s 2, accuracy is prioritised. 

precision = ,
TP + FP

TP

recall = ,
TP + FN

TP

2

2

( 1)  precision  recall Score = 
 precision + recall

F β
β
+ × ×

-
× Where is the bias and 𝛽 = 1 

is the F-Score. When the value is 1, recall is valued; when the value 
is 2, precision is sought.

Discriminant Power (DP) and Youden’s index are two more metrics 
used to analyze a classifier’s potential to make medical diagnoses. 
DP tests a classifier’s ability to distinguish between positive and 
negative samples:

3 = (logX + logY)DP
π

Where ,  Y = 
1 1

sensitivity specificityX
sensitivity specificity

=
- -

The eventual consequence may be expressed clearly as follows: In 
the DPs indicated below, the phrases “poor discriminant,” “limit-
ed discriminant,” “fair discriminant,” and “great discriminant” are 
used: 1, 2, and 3.

 = (1 )sensitivity specificityγ - -
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Fig. 4. The fundamental framework of the research.

In this study, we apply ICA to lower the data complexity, and then 
split the data into subgroups using 5/10-CV and 20% partitioning. 
ANN, RBFNN, SVM, and k-NN models are taught and assessed 
following these subgroups. Performance measures including sensi-
tivity, specificity, accuracy, F-score, Youden’s index, DP, and ROC 
curve are produced from the classification data. The first IC, ad-
opted as a feature vector owing of its high eigenvalue, adequately 
encapsulates the information of the thirty qualities. Figure 5 depicts 
this selection technique. Additionally, Figure 6 displays the IC’s dis-
tribution, revealing its discriminative features. The diagnostic per-
formance of the algorithms is examined on the test data to show its 
utility in breast cancer classification

Fig. 5. The eigenvalues that correspond to the WDBC dataset.

Fig. 6. The estimated IC’s probability density function (feature vector after 
dimensionality reduction). Note: ( ) Benign; ( ) Malignant.

This study investigates classifier efficacy using Youden’s index and 
the Receiver Operating Characteristic (ROC) curve. The research 
contains 5/10-fold Cross-Validation (CV) with 20% data parti-
tioning. CV splits data into subsets for training and testing, assess-
ing the model’s discriminating performance after repeated rounds. 
Data splitting randomly chooses 20% for testing and employs the 
remaining for training, being less accurate but easier to perform 
[32,33]. 

Literature survey

The domain of medical diagnostics has been considerably changed 
by the deployment of machine learning and deep learning tech-
nology. Several recent research publications have given unique ap-
proaches for early disease diagnosis and proper rating in various 
medical scenarios. For instance, Mohamed created a technique 
merging convolutional neural networks with two-dimensional dis-
crete wavelet transform to recognise seizures [1]. Agudelo Gaviria 
and Sarria-Paja described a breast cancer detection strategy apply-
ing deep learning models based on digital diagnostic pictures [2]. 
Amer mdeveloped a technique for identifying lung lesions in CT 
images using feature integration and a genetic algorithm [3].

Hesham created an ensemble learning-based technique for prop-
er breast cancer labelling [4]. In a similar experiment, Yang con-
structed an astounding multiple heartbeats categorization model 
based on convolutional neural networks and bidirectional extended 
short-term memory [5]. Sumana established an artificial neural net-
work-based technique for identifying nephrolithiasis with KUB ul-
trasound imaging [6]. Whereas Gunasundari designed a deep con-
volutional neural network for locating liver lesions with abdominal 
CT data [7].

Mert proposed a reduced feature set-based model for breast can-
cer diagnosis [8]. Zhang explored a computer-aided diagnostic 
approach for breast focal imbalance [9]. Rao made a comparison 
examination of flaw detection in distribution systems utilising 
DWT-FFNN and DWT-RBFNN [10]. Thakur created a model for 
face recognition using posterior distance model-based radial basis 
function neural networks [11].

Hashim and Alzubaydi established a technique for discerning secret 
information based on lowered coefficient values of 2DHWT sub-
bands [12]. Adnan established an explicit AI-based methodology 
for monitoring student progress in virtual learning environments 
[13]. Haruna  presented a neuro-genetic model for forecasting 
crude oil prices [14]. Wanga created a complete regression neural 
network-based model for assessing chip probe output [15]. Jothi-
kumar designed a more effective remote application monitoring 
solution leveraging the PROXMOX virtual environment [16].

Finally, Bazatbekov created a 2D face recognition model combin-
ing PCA and triplet similarity embedding [17]. These findings 
highlight the great potential of machine learning and deep learn-
ing technology across several fields, including medical monitoring. 
These occurrences establish a good foundation for further investi-
gation in this area,

Methodology

This research analyses classifier performance on breast cancer data 
with both the original 30 features and a single feature reduced 
through ICA. Figure 4 depicts the model applied to WDBC data 
with 30 attributes, trained and assessed on 569 occurrences (pa-
tients).

© Oncology and Radiotherapy 18 (S1)2024: 01-13
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Fig. 9. A visualization of the performance of the neural networks with radial 
basis functions using an accuracy graph. Note: ( ) 20% Test data with 30 

features; ( ) 10-fold CV with 30 features; ( ) 20% test data with 1 feature; 
( ) 10- fold CV with 1 feature. 

For ANN, utilising the top 30 characteristics and 20% test data 
generated 99.12% accuracy with four neurons. The impact of ICA 
in compressing to one feature enhanced accuracy to 91.23% for 
nine neurons. However, the accuracy fell from 97.54% to 90.51% 
after applying 10-CV. RBFNN’s spread value was determined be-
tween 0 and 60 with the greatest accuracy employing 20% test data 
and 10/5-CV, obtaining 95.12% accuracy at a spread value of 48. 
With a smaller one-dimensional feature vector utilising ICA, the 
accuracy reduced to 90.35%, but it rose to 90.49% with 10-CV.

SVM performance was assessed using different kernel function 
values. For 20% test data, SVM applying a linear kernel had an 
accuracy of 98.25% with 30 features and 90.35% with 1 lowered 
feature by ICA. ICA boosted the accuracy of SVM with RBF kernel 
from 89.47% to 91.23% (1 feature). However, when 10-CV was 
applied, the accuracy fell from 97.54% (30 features, linear kernel) 
to 90.33% and 90.86%, respectively, for RBF and polynomial ker-
nels (1 feature).

The classifiers’ performance metrics, such as accuracy, specificity, 
sensitivity, F-score, Youden’s index, and discriminant power, were 
compared for each parameter variation. ROC curves of three cate-
gories were also presented for visual comparison. The measurement 
utilises 10-CV and an ICA-compressed one-dimensional feature 
vector. The confusion matrix in Table 3 demonstrates the classifier’s 
performance, displaying much improved true values as compared 
to classification with one feature missing using ICA.

In summary, the study comprehensively investigated the perfor-
mance of k-NN, ANN, RBFNN, and SVM classifiers with varied 
parameter values and underlined the effect of feature reduction us-
ing ICA on their accuracy and discriminative powers. The results 
give significant insights into the efficacy of these algorithms for 
breast cancer categorization tasks (Figure 10).

Table 4 examines the impact of ICA on the k-NN, ANN, RBFNN, 
and SVM models using many performance metrics such as sensi-
tivity, specificity, accuracy, F-score, Discriminant Power (DP), and 
Youden’s index.

Discriminant power examines a classifier’s ability to differentiate 
between positive and negative data. ANN and SVM demonstrate 
remarkable separation abilities, with DP ranging from 3 to 30 for 
30 different characteristics. When reducing to one dimension, 
SVM and ICA (ANN) generate DP values of 2.769 and 2.655, 
respectively, suggesting efficient discriminators.

The k-NN algorithm leverages the one-dimensional Euclidean 
distance (d=(xtest - xtraining)^2) between test and training data. 
Performance statistics are retained for the greatest k value, acquired 
from k values ranging from 1 to 25. The ANN model contains a 
feedforward neural network with one hidden layer, continuously 
increasing the number neurons in the hidden layer for best accu-
racy. The log-sigmoid transfer function is employed for the hid-
den layer’s activation function, and the network is taught using 
the gradient descent with momentum and variable learning rate 
backpropagation technique. Additionally, RBFNN is tested with 
varying spread value. SVM techniques evaluate linear, quadratic, 
and RBF kernels for successful breast cancer categorization.

RESULTS
In this study, we utilised the WDBC data to train and evaluate 
models leveraging a one-dimensional feature vector produced us-
ing ICA. We examined accuracy, sensitivity, and specificity for 
one-dimensionality using a 5/10 CV technique with 20% test data. 
Sensitivity was stressed because it is crucial in detecting dangerous 
cancers. The accuracy of the k-NN classifier was tested for k values 
ranging from 1 to 25, and Figure 7 shows a comparison graph illus-
trating the effect of ICA on the k-NN classifier’s performance. The 
findings give vital information on the efficiency of feature reduc-
tion using ICA for breast cancer classification. 

Fig. 7. The estimated IC’s probability density function (feature vector after 
dimensionality reduction). Note: ( ) 20% Test data with 30 features; ( ) 
10-fold CV with 30 features; ( ) 20% test data with 1 feature; ( ) 10- fold 

CV with 1 feature. 

The study investigated k-NN, ANN, RBFNN, and SVM models to 
anticipate their highest accuracy for different parameter tweaks. The 
maximum accuracy obtained was 96.49% while utilising 20% test 
data and 30 characteristics with k=5. However, with k=5 and 20% 
test data, the accuracy fell to 92.98% when employing a shorter 
one-dimensional feature vector produced using ICA. Additionally, 
adopting 10-CV for training and testing dropped the accuracy of 
k-NN from 93.15% (30 features) to 91.04% (1 feature via ICA) 
(Figures 8 and 9).

Fig. 8. A graph showing the artificial neural network’s accuracy. Note: ( ) 
20% Test data with 30 features; ( ) 10-fold CV with 30 features; ( ) 20% 

test data with 1 feature; ( ) 10- fold CV with 1 feature. 

© Oncology and Radiotherapy 18 (S1)2024: 01-13
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Tab. 3. Comparing the confusion matrices of the 
classifiers with one reduced feature (1F) with the 
original 30 features allows for an investigation 
of the performance of classifiers with decreased 
dimensionality using Independent Component 
investigation (ICA).

k-NN classifier (k-6) ANN classifier (neuron number 7)

Predicted Measurement Predicted Measurement

True Mea-
surement

Cancerous Harmless True Mea-
surement

Cancerous Harmless

IF 30F IF 30F IF 30F IF 30F

Cancerous 338 (TP) 346 19(FN) 11 Cancerous 346 (TP) 357 11(FN) 0

Harmless 32(FP) 28 180(TN) 184 Harmless 43(FP) 14 169(TN) 198

RBFNN classifier (spread =28) SVM classifier (σ =1.3)

Predicted Measurement Predicted Measurement

True Mea-
surement

Cancerous Harmless True Mea-
surement

Cancerous Harmless

IF 30F IF 30F IF 30F IF 30F

Cancerous 345 (TP) 334 12(FN) 23 Cancerous 348 (TP) 343 14(FN) 9

Harmless 43(FP) 138 169(TN) 74 Harmless 43(FP) 13 169(TN) 199

Fig. 10. A series of graphs demonstrating the effectiveness of several Kernel Machine classifiers.  Note: ( ) 20% Test data with 30 features; ( ) 10-fold CV 
with 30 features; ( ) 20% test data with 1 feature; ( ) 10- fold CV with 1 feature. 

Tab. 4. An analysis of the impact of the ICA algorithm 
on various performance measures (including sensitivity, 
specificity, accuracy, and F-score as a percentage) for the 
classifiers.

 k-NN ANN RBFNN SVM (RBFK)

IF 30F IF 30F IF 30F IF 30F

F-score 92.98 94.65 92.76 98.07 92.61 80.57 93.04 96.21

DP 2.539 2.912 2.655 InF 2.606 1.131 2.769 3.267

Y 0.795 0.839 0.766 0.934 0.763 0.284 0.772 0.899

Accuracy 91.03 93.14 90.5 97.53 90.49 87.17 90.86 95.25

Specificity 84.9 87.26 79.71 93.39 79.71 34.9 79.71 93.86

Sensitivity 94.67 96.63 96.91 100 96.63 93.55 97.47 96.07

© Oncology and Radiotherapy 18 (S1)2024: 01-13
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successfully segregate data using a single feature.

Table 5 reveals that NN trumps ANN, RBFNN, and SVM with 
a superior k-accuracy of 91.03% compared to their accuracies of 
90.50%, 90.49%, and 90.86%, respectively, when using ICA. 
Interestingly, k-NN, ANN, and SVM indicate decreased accura-
cy when one feature is omitted, yet RBFNN’s performance rises. 
Table 6 illustrates a comparison of the computation times for each 
categorization strategy with the original 30 criteria.

In terms of processing time, the proposed techniques outperform 
straightforward classification of the original dataset. Creating an 
Independent Component (IC) for classification is significantly less 
complex than designing a neural network with 30 variables. When 
ANN and RBFN were divided by 20%, the processing durations 
dropped from 13.9 to 11.12 seconds and from 20.03 to 14.9 sec-
onds, respectively. The introduction of IC as a feature leads in a 
noticeable drop in complexity during 10-fold cross-validation, low-
ering ANN and RBFNN usage durations from 118.21 to 76.72 
seconds and 129.84 to 90.49 seconds, respectively. ICA also in-
creases SVM and k-NN estimates substantially.

Youden’s index, which represents a classifier’s capacity to avoid false 
predictions, attains its best value when k-NN is applied. The classi-
fier’s ROC curve, based on Youden’s index, depicts the true positive 
rate (sensitivity) as a function of the false positive rate (1-specific-
ity). The ROC curve is used to measure the area under the curve 
(AUC) and its 95% confidence interval (CI). An AUC of 1 reveals 
flawless classifications, whereas AUC larger than one implies more 
precise conclusions. The 95% CI, another ROC curve metric, anal-
yses the classifier’s ability to discriminate between classes; quantities 
bigger than zero signal effective discrimination.

Figure 11 depicts the ROC curves for k-NN, ANN, RBFNN, and 
SVM models using a one-dimensional feature vector lowered by 
ICA and the original 30 features. The results reveal insights into the 
models’ performance and illustrate the advantages of applying ICA 
in classification tasks.

Table 5 offers the classifier ROC curves required. AUCs of ANN 
and SVM improve (0.966 and 0.949) with 30 additional features. 
For SVM (0.885) and k-NN (0.897), AUC is increased when using 
a single feature reduction by ICA. This implies SVM and k-NN 

Fig. 11. To evaluate the sensitivity and specificity of the kNN, ANN, RBFNN, and SVM classifiers, we generated Receiver Operating Characteristic (ROC) curves.  
Note: ( ) k-NN(1 IC); ( ) ANN (1 IC); ( ) RBFNN(1 IC); ( ) SVM RBF (1 IC); ( ) k-NN (30 features); ( ) ANN (30 features); ( ) RBFNN (30 features); ( ) 

SVM RBF (30 features). 

Tab. 5. Criterion values of the ROC curves of 𝑘𝑘-NN, ANN,
RBFNN, and SVM

Criterion k-NN ANN RBFNN SVM 

IF 30F IF 30F IF 30F IF 30F

AUC 0.88 0.911 0.879 0.956 0.881 0.877 0.879 0.945

95%CI 0.86-0.92 0.89-0.94 0.85-0.91 0.94-0.98 0.85-0.91 0.85-0.91 0.85-0.91 0.92-0.97

Tab. 6. The execution time required for the classification 
process.

Discriminator Segmentation Intercommunication 
duration (seconds)

30 attributes(seconds)

k-NN 20%                            
10-CV

8.02                            
13.52 

8.31         14.77 

ANN 20%                            
10-CV

11.12                            
76.72

13.9         118.21

RBFNN 20%                            
10-CV

14.9                            
90.49

20.3       129.84

SVM (poly) 20%                            
10-CV

7.17
7.47

7.28        9.13

SVM(RBFK) 20%                            
10-CV

9.02                            
10.72

43.30         19.05
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over fitting by deleting marginally relevant properties.

Other visualisations, such as heat maps, pair plots, count plots, and 
scatter plots, offered insights into the data’s properties. The identi-
fication of numerous significantly connected features showed their 
potential as effective breast cancer indicators. These findings stress 
the necessity of feature selection in creating an efficient and accu-
rate classification model Figures 12-15.

Breast cancer is more frequent in women, underscoring the signifi-
cance of early detection to minimise death rates. Machine learning 
algorithms, such as SVM, excel in spotting breast cancer occurrences 
in data. This research makes use of the scikit-learn, pandas, seaborn, 
matplotlib, and numpy tools, and the breast cancer dataset was im-
ported using scikit-learn’s load breast cancer function. Exploration of 
the dataset’s features, objective variables, and relationships indicates 
significant drivers for effective breast cancer diagnosis while avoiding 

Fig. 12. Pair plot of cancer data with selected features. Note:( )0.0; ( )1.0.
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Fig. 13. Count plot distribution of target in cancer data. Note:( )0.0; ( )1.0.

Fig. 14. Scatterplot of mean area vs. mean smoothness with target. Note:( )0.0; ( )1.0.

Fig. 15. Correlation heat map of cancer data features.
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Greater sensitivity in cancer categorization indicates enhanced de-
tection of malignant samples, enabling doctors to more properly 
identify carcinogenic masses and distinguish malignant tumors. To 
analyse the impact of ICA-based feature reduction, Table 7 displays 
accuracy and sensitivity metrics from past classification efforts, 
alongside the newest study utilising the WDBC dataset. Nota-
bly, the WBC dataset was also utilised in research unrelated to the 
WDBC study.

The incorporation of a large number of criteria assists the differen-
tiating between benign and aggressive breast cancer patients. The 
reduction of ICA features into a single feature has a major effect 
on the accuracy of k-NN, ANN, and SVM classifiers. This feature 
reduction, on the other hand, boosts the sensitivity and accuracy of 
SVM and RBFNN classifiers.

As indicated in Table 7, the analysis of classifiers applying the 
one-dimensional feature vector created by ICA offers remarkable 
results, outperforming other approaches in terms of sensitivity 
measures. Nonetheless, the recommended categories’ accuracy rat-
ings are substantially lower (90.53% 0.34%) than those derived by 
prior approaches (94.93% 2.07). For example, employing a 6-di-
mensional feature space obtained by the K-means approach, a hy-
brid methodology combining Discrete Wavelet Transform (DWT) 
and ICA gave exceptional 10-CV accuracy rates of 96.31% and 
97.38% with SVM and PNN, respectively. Notably, WDBC data 
providers attained the greatest accuracy of 97.50% by applying the 
Multisurface Method Tree (MSMT) with three provided features 
[38]. In terms of scores, additional SVM-based study applying 30 
criteria [36,38] indicated equivalent outcomes to our one-dimen-
sional findings.

To divide the dataset into training and testing sets, we utilised the 
scikit-learn test-split technique. SVM training on the training set 
gave 96% accuracy, exhibiting excellent performance. Figures 16 
and 17 show the heatmap and categorization report, respectively.

To increase the model’s performance, we incorporated normalisa-
tion and scaling features with a mean of zero and a standard de-
viation of one. Through feature aggregation, our strategy lowered 
the effect of outliers while boosting accuracy. We then fine-tuned 
SVM’s hyper parameters using scikit-Grid Search, adjusting C and 
gamma values. This adjustment resulted in a 97% increase in ac-
curacy. The graphic in Figure 18 and the categorization report in 
Figure 19 clearly illustrate the large increase gained with these im-
provements

We were able to properly identify breast cancer using the SVM 
technique. Machine learning technologies have the potential to 
enhance recognition models. More study is necessary to find tech-
niques and strategies for enhanced efficiency.

DISCUSSION
Sensitivity and specificity are crucial parameters in cancer classifica-
tion, reflecting the accurate identification of genuine positives and 
negatives, respectively. Interestingly, when applying a one-dimen-
sional feature vector reduced by ICA, the accuracy of classifiers sub-
stantially reduces, but SVM and RBFNN classifiers demonstrate 
increased sensitivity levels. Particularly, SVM with an RBF kernel 
and just one feature delivers the maximum sensitivity level. Figure 
20 simply demonstrates the impact of ICA on the sensitivity pa-
rameters of the classifier.

Fig. 16. Heat map of 96% accuracy.

Fig. 17. Classification report of 96% accuracy.
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Fig. 18. Heat map of 97% accuracy.

Fig. 19. Classification report of 97% accuracy.

Fig. 20. A comparison of the sensitivity scores among the classifiers. Note: ( ) 1 F( IC); ( ) 30 features.
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Tab. 7. An analysis of the accuracy and 
methods used in previous research com-
pared to the results and techniques of this 
study. 

Author Method Feature number Accuracy Sensitivity

Krishnan, et al.[33] 40% test data, SVM (poly)
40% test data, SVM (RBF)

30 92.62%      
93.72%

92.69%      
94.50%

Bagui,et al.[34] 64% test data, k-RNN                      
64% test data,k-RNN 

30                                          
Best 3

96.00%      
98.10%

95.09%         
98.05%

Sweilam,et al.[35] PSO+ SVM                               
QPSO+SVM

30 93.52%      
93.06%

91.52%      
90.00%

Mangasarian,et al.[36] 10-CV,MSM-T                     Best 3 97.50%  

Mert,et al.[37] 10-CV, PNN               ANN ANN ANN

      LOO,PNN 3 (2IC+DWT) 96.31%      97.01% 98.88%         
97.78%

ANN

Zhang,et al.[38] k-SVM                 6 97.38%  

This study 10-CV,k-NN 1 feature reduced by ICA 91.03% 94.67%

40 % test, k-NN 92.56% 94.02%

10-CV,ANN 90.50% 96.91%

40% test, ANN 90.89% 97.00%

10-CV,RBFNN 90.49% 96.63%

40% test, RBFNN 89.98% 96.01%

10-CV,SVM (linear) 90.33% 96.35%

40% test, SVM (linear) 90.01% 95.00%

10-CV,SVM (quadratic) 89.98% 95.24%

40% test, SVM (quadratic) 91.01% 96.42%

10-CV,SVM (RBF) 90.86% 97.47%

40% test, SVM (RBF) 91.03% 97.56%

stood out dramatically. It demonstrates a large boost in accuracy 
from 87.17% to 90.49% using the one-dimensional feature vector. 
Moreover, both RBFNN and SVM demonstrated improved sensi-
tivity rates for accurately categorising malignant samples, suggest-
ing its potential in identifying breast cancer patients effectively.

The findings shows that feature reduction using ICA may be a de-
sirable method, particularly when endeavouring to enhance the de-
tection rate of malignant breast cancer patients consistently, while 
preserving good accuracy. Additionally, this strategy may lead to 
lower computational complexity, making it an appealing choice for 
practical applications. As we delve further into the inquiry, we aim 
to unearth novel insights about the benefits and limitations of ICA-
based dimensionality reduction in breast cancer diagnosis.

CONCLUSION
In this research, we aim to explore the impact of dimensionality 
reduction using Independent Component Analysis (ICA) on breast 
cancer decision support systems, employing a diverse range of clas-
sifiers such as Artificial Neural Networks (ANN), k-Nearest Neigh-
bors (k-NN), Radial Basis Function Neural Networks (RBFNN), 
and Support Vector Machines (SVM). We will compare the results 
obtained from the reduced one-dimensional feature vector created 
using ICA with the original thirty features of the Wisconsin Diag-
nostic Breast Cancer (WDBC) dataset.

The early findings show remarkable trends in the categorization 
accuracy rates. While the accuracy rates for other classifiers de-
clined considerably by using the less features, the RBFNN classifier 

© Oncology and Radiotherapy 18 (S1)2024: 01-13



13  -

RE
FE

RE
N

CE
S 1. Mohamed G, Eldib H, Sharkas M. Seizure prediction using two-dimension-

al discrete wavelet transform and convolution neural networks. InIDDM. 
2021;4:100-108. 

2. Agudelo GH, Sarria PM. Breast cancer detection using digital histopathology 
images and pre-trained deep learning models. Journal of Computer and 
Electronic Sciences: Theory and Applications. 2021 Dec 14;2(2):27.

3. Amer HM, Elmikati HA, Abou-Chadi FE, et al. Detection of lung nodules in ct 
images using features fusion and genetic algorithm. International Journal of 
Scientific & Engineering Research. 2017;8: 1632-1639. 

4. Hesham A, El-Rashidy N, Rezk A, et al. Towards an accurate breast cancer 
classification model based on ensemble learning. Int J Adv Comput Sci Appl. 
2022; 13:590-602. 

5. Yang M, Liu W, Zhang H. A robust multiple heartbeats classification with 
weight-based loss based on convolutional neural network and bidirectional 
long short-term memory. Front Physiol. 2022;13:2533. 

6. Sumana G, Aparna G, Anitha Mary G. An artificial neural networks feature 
extraction approach to predict nephrolithiasis (kidney stones) based on kub 
ultrasound imaging. Smart Computing Techniques and Applications.2021;1: 
583-596. 

7. Gunasundari S, Meenambal S, Tamilselvi S, et al. Deep convolution neural 
network in classification of liver tumour as benign or malignant from abdomi-
nal computed tomography. ICICICT(IEEE). 2022; 11: 654-660. 

8. Mert A, Kılıç N, Bilgili E, et al. Breast cancer detection with reduced feature 
set. Comput Math Methods Med. 2015;19: 265138. 

9. Zhang Z. Investigation of a computer-aided detection solution for breast focal 
asymmetry. 2011. 

10. Rao TS, Ram ST, Subrahmanyam JB. Comparative analysis of fault 
diagnosis in distribution system with the aid of DWT-FFNN and DWT-RB-
FNN. Artificial Intelligence and Evolutionary Computations in Engineering 
Systems.2018; 585-596. 

11. Thakur S, Sing JK, Basu DK, et al. Face recognition using posterior distance 
model based radial basis function neural networks. InPattern Recognition 
and Machine Intelligence: Third International Conference.2009 :470-475. 

12. Hashim SM, Alzubaydi DA. Identify the presence of hidden information 
based on lower coefficients value of 2dhwt sub-bands. 7th International En-
gineering Conference “Research & Innovation amid Global Pandemic”(IEC). 
2021;156-161. 

13. Adnan M, Uddin MI, Khan E, et al. Earliest possible global and local interpre-
tation of students’ performance in virtual learning environment by leveraging 
explainable AI. IEEE Access. 2022;10:129843-64. 

14. Haruna C. Neuro-genetic model for the projection of crude oil price capable 
of handling of uncertainty/haruna chiroma. 2015. 

15. Wanga, Chien-Chih, Chi-Hung Kuoa, et al. Wafer probe yield prediction 
modeling based on general regression neural network to improve DRAM 
processes.2019. 

16. Jothikumar R, Susi S, Subramaniam K, et al. Improving the efficiency and 
performance of remote application monitoring system by proxmox virtual 
environment. Journal of Computational and Theoretical Nanoscience. 
2019;16(2):773-7. 

17. Bazatbekov B, Turan C, Kadyrov S, et al. 2D face recognition using PCA and 
triplet similarity embedding. Bulletin of Electrical Engineering and Informat-
ics.2023; 12(1):580-6. 

18. Smith ER. Algorithms and geometric analysis of data sets that are invariant 
under a group action. 2010. 

19. Rizayeva A, Nita MD, Radeloff VC. Large-area, 1964 land cover classifica-
tions of Corona spy satellite imagery for the Caucasus Mountains. Remote 
sensing of environment. 2023; 284:113343. 

20. Kota S. Dimensionality reduction and fusion strategies for the design of 
parametric signal classifiers. 2010

21. Patil MN, Khandagale MH. A review on multilevel wrapper verification system 
with maintenance model enhancement. International Journal of Advanced 
Engineering Research and Science. 2016; 3(12) :236944. 

22. Wolberg WH, Street WN, Mangasarian OL. Machine learning techniques 
to diagnose breast cancer from image-processed nuclear features of fine 
needle aspirates. Cancer lett. 1994;77(2-3):163-71.

23. Liu KH, Li B, Wu QQ, et al. Microarray data classification based on ensemble 
independent component selection. Comput Biol Med. 2009;39(11):953-60. 

24. The FastICA package for MATLAB. 2013.

25. Bilski J. The UD RLS algorithm for training feedforward neural networks. 
International Journal of Applied Mathematics and Computer Science. 
2005;1(15):115-23. 

26. Sivri N, Kilic N, Ucan O. Estimation of stream temperature in Firtina 
Creek (Rize-Turkiye) using artificial neural network model. J Environ Biol. 
2007;28(1):67-72. 

27. Abdalla OA, Zakaria MN, Sulaiman S, et al. A comparison of feed-forward 
back-propagation and radial basis artificial neural networks: A Monte Carlo 
study. international symposium on information technology. 2010; 2: 994-998. 
[Crossref] [Google Scholar] 

28. Boser BE, Guyon IM, Vapnik VN. A training algorithm for optimal margin clas-
sifiers. Proceedings of the fifth annual workshop on Computational learning 
theory. 1992; 1:144-152). [Crossref] [Google Scholar] 

29. Vapnik VN. The nature of statistical learning theory. 840 Springer-Verlag New 
York. 1995;841:842.

30. Courant R, Hilbert D. Methods of Mathematical Physics. Wiley.1953

31. Youden WJ. Index for rating diagnostic tests. Cancer. 1950;3(1):32-5. 

32. Pesce LL, Metz CE. Reliable and computationally efficient maximum-like-
lihood estimation of “proper” binormal ROC curves. Acad Radiol. 
2007;14(7):814-29. 

33. Hamidzadeh J, Monsefi R, Sadoghi Yazdi H. DDC: distance-based decision 
classifier. Neural computing and applications. 2012;21:1697-707. 

34. Krishnan MM, Banerjee S, Chakraborty C, et al. Statistical analysis of 
mammographic features and its classification using support vector machine. 
Expert Systems with Applications. 2010;37(1):470-8. 

35. Bagui SC, Bagui S, Pal K, et al. Breast cancer detection using rank nearest 
neighbor classification rules. Pattern recognition. 2003;36(1):25-34. 

36. Sweilam NH, Tharwat AA, Moniem NA. Support vector machine for diag-
nosis cancer disease: A comparative study. Egyptian Informatics Journal. 
2010;2(11):81-92. 

37. Mangasarian OL, Street WN, Wolberg WH. Breast cancer diagnosis and 
prognosis via linear programming. Operations Research. 1995;43(4):570.] 

38. Mert A, Kılıç N, Akan A. An improved hybrid feature reduction for increased 
breast cancer diagnostic performance. Biomedical Engineering Letters. 2014 
;4:285-91. 

39. Zheng B, Yoon SW, Lam SS. Breast cancer diagnosis based on feature 
extraction using a hybrid of K-means and support vector machine algorithms. 
Expert systems with applications. 2014;41(4):1476-82. 

© Oncology and Radiotherapy 18 (S1)2024: 01-13

https://ceur-ws.org/Vol-3038/short4.pdf
https://ceur-ws.org/Vol-3038/short4.pdf
https://d1wqtxts1xzle7.cloudfront.net/56923149/Detection-of-Lung-Nodules-in-CT-Images-Using-Features-fusion-and-Genetic-Algorithm-libre.pdf?1530689399=&response-content-disposition=inline%3B+filename%3DDetection_of_Lung_Nodules_in_CT_Images_U.pdf&Expires=1700805745&Signature=HxjhAW5Dp-YokJA-~d~MEUYflEsylQJfELMFmkX4zMNqhDsg7q1bu5nNbwspPCTFqAZoAEboeffr37xSqxq7u9jIDRW3-jKYzCgpB6PkbgQf7caZY7xBwLSMkSem0exRApf19VAnrbL9a8VWFS6iM3aSkMKnRiM8n3km8EKndNPvSiEQVcjilAqi571TThub9U9aIRY29Xn6u28-gB1eYC-FjX~5reYV7k8Qv4eDp4Z~ckw4eu~AnWjWgz5WjoD0~m8U4Z5w9tvpti8TGUq4A1a6fMLxlr~FxdY4JZmIZySB8k1j2r~g12l537epnXny2lG5BV8fQ-3qxcJIbO2HpA__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/56923149/Detection-of-Lung-Nodules-in-CT-Images-Using-Features-fusion-and-Genetic-Algorithm-libre.pdf?1530689399=&response-content-disposition=inline%3B+filename%3DDetection_of_Lung_Nodules_in_CT_Images_U.pdf&Expires=1700805745&Signature=HxjhAW5Dp-YokJA-~d~MEUYflEsylQJfELMFmkX4zMNqhDsg7q1bu5nNbwspPCTFqAZoAEboeffr37xSqxq7u9jIDRW3-jKYzCgpB6PkbgQf7caZY7xBwLSMkSem0exRApf19VAnrbL9a8VWFS6iM3aSkMKnRiM8n3km8EKndNPvSiEQVcjilAqi571TThub9U9aIRY29Xn6u28-gB1eYC-FjX~5reYV7k8Qv4eDp4Z~ckw4eu~AnWjWgz5WjoD0~m8U4Z5w9tvpti8TGUq4A1a6fMLxlr~FxdY4JZmIZySB8k1j2r~g12l537epnXny2lG5BV8fQ-3qxcJIbO2HpA__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://www.proquest.com/openview/45feb85c9a7b129807103acb36acde28/1?pq-origsite=gscholar&cbl=5444811
https://www.proquest.com/openview/45feb85c9a7b129807103acb36acde28/1?pq-origsite=gscholar&cbl=5444811
https://www.frontiersin.org/articles/10.3389/fphys.2022.982537/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.982537/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.982537/full
https://link.springer.com/chapter/10.1007/978-981-16-0878-0_57
https://link.springer.com/chapter/10.1007/978-981-16-0878-0_57
https://link.springer.com/chapter/10.1007/978-981-16-0878-0_57
https://ieeexplore.ieee.org/abstract/document/9917986
https://ieeexplore.ieee.org/abstract/document/9917986
https://ieeexplore.ieee.org/abstract/document/9917986
https://www.hindawi.com/journals/cmmm/2015/265138/
https://www.hindawi.com/journals/cmmm/2015/265138/
file:///C:\Users\omics\AppData\Local\Temp\Rar$DIa5300.5737\Zhang%20Z.%20Investigation%20of%20a%20Computer-Aided%20Detection%20Solution%20for%20Breast%20Focal%20Asymmetry%20(Doctoral%20dissertation,%20University%20of%20Huddersfield)
file:///C:\Users\omics\AppData\Local\Temp\Rar$DIa5300.5737\Zhang%20Z.%20Investigation%20of%20a%20Computer-Aided%20Detection%20Solution%20for%20Breast%20Focal%20Asymmetry%20(Doctoral%20dissertation,%20University%20of%20Huddersfield)
https://link.springer.com/chapter/10.1007/978-981-10-7868-2_56
https://link.springer.com/chapter/10.1007/978-981-10-7868-2_56
https://link.springer.com/chapter/10.1007/978-981-10-7868-2_56
https://link.springer.com/chapter/10.1007/978-3-642-11164-8_76
https://link.springer.com/chapter/10.1007/978-3-642-11164-8_76
https://ieeexplore.ieee.org/abstract/document/9476121
https://ieeexplore.ieee.org/abstract/document/9476121
https://ieeexplore.ieee.org/abstract/document/9970711
https://ieeexplore.ieee.org/abstract/document/9970711
https://ieeexplore.ieee.org/abstract/document/9970711
https://studentsrepo.um.edu.my/6836/
https://studentsrepo.um.edu.my/6836/
https://www.ingentaconnect.com/contentone/asp/jctn/2019/00000016/00000002/art00083
https://www.ingentaconnect.com/contentone/asp/jctn/2019/00000016/00000002/art00083
https://www.ingentaconnect.com/contentone/asp/jctn/2019/00000016/00000002/art00083
https://beei.org/index.php/EEI/article/view/4162
https://beei.org/index.php/EEI/article/view/4162
https://www.proquest.com/openview/3f2fe384577b76060b278018d4e8a9ed/1?pq-origsite=gscholar&cbl=18750
https://www.proquest.com/openview/3f2fe384577b76060b278018d4e8a9ed/1?pq-origsite=gscholar&cbl=18750
https://www.sciencedirect.com/science/article/abs/pii/S0034425722004497
https://www.sciencedirect.com/science/article/abs/pii/S0034425722004497
https://opensiuc.lib.siu.edu/dissertations/171/
https://opensiuc.lib.siu.edu/dissertations/171/
https://www.neliti.com/publications/236944/a-review-on-multilevel-wrapper-verification-system-with-maintenance-model-enhanc
https://www.neliti.com/publications/236944/a-review-on-multilevel-wrapper-verification-system-with-maintenance-model-enhanc
https://www.sciencedirect.com/science/article/abs/pii/030438359490099X
https://www.sciencedirect.com/science/article/abs/pii/030438359490099X
https://www.sciencedirect.com/science/article/abs/pii/030438359490099X
https://www.sciencedirect.com/science/article/abs/pii/S0010482509001322
https://www.sciencedirect.com/science/article/abs/pii/S0010482509001322
http://research.ics.aalto.fi/ica/fastica/
https://www.infona.pl/resource/bwmeta1.element.bwnjournal-article-amcv15i1p115bwm
https://avesis.istanbul.edu.tr/yayin/63c68b36-2ca2-4807-81b1-b2f2ba914c6c/estimation-of-stream-temperature-in-firtina-creek-rize-turkiye-using-artificial-neural-network-model
https://avesis.istanbul.edu.tr/yayin/63c68b36-2ca2-4807-81b1-b2f2ba914c6c/estimation-of-stream-temperature-in-firtina-creek-rize-turkiye-using-artificial-neural-network-model
https://ieeexplore.ieee.org/abstract/document/5561599
https://ieeexplore.ieee.org/abstract/document/5561599
https://ieeexplore.ieee.org/abstract/document/5561599
https://doi.org/10.1109/ITSIM.2010.5561599
https://scholar.google.com/scholar?cluster=15254398152254733176&hl=en&as_sdt=0,5
https://dl.acm.org/doi/abs/10.1145/130385.130401
https://dl.acm.org/doi/abs/10.1145/130385.130401
https://doi.org/10.1145/130385.130401
https://scholar.google.com/scholar?cluster=6022319574387867911&hl=en&as_sdt=0,5
https://acsjournals.onlinelibrary.wiley.com/doi/abs/10.1002/1097-0142(1950)3:1%3C32::AID-CNCR2820030106%3E3.0.CO;2-3
https://www.academicradiology.org/article/S1076-6332(07)00177-8/fulltext
https://www.academicradiology.org/article/S1076-6332(07)00177-8/fulltext
https://link.springer.com/article/10.1007/s00521-011-0762-8
https://link.springer.com/article/10.1007/s00521-011-0762-8
https://www.sciencedirect.com/science/article/abs/pii/S0957417409004862
https://www.sciencedirect.com/science/article/abs/pii/S0957417409004862
https://www.sciencedirect.com/science/article/abs/pii/S0031320302000444
https://www.sciencedirect.com/science/article/abs/pii/S0031320302000444
https://www.infona.pl/resource/bwmeta1.element.elsevier-fa7d9fb1-0475-380f-8b3b-f37ac82ba97a
https://www.infona.pl/resource/bwmeta1.element.elsevier-fa7d9fb1-0475-380f-8b3b-f37ac82ba97a
https://pubsonline.informs.org/doi/abs/10.1287/opre.43.4.570
https://pubsonline.informs.org/doi/abs/10.1287/opre.43.4.570
https://link.springer.com/article/10.1007/s13534-014-0148-9
https://link.springer.com/article/10.1007/s13534-014-0148-9
https://www.sciencedirect.com/science/article/abs/pii/S0957417413006659
https://www.sciencedirect.com/science/article/abs/pii/S0957417413006659

