The effect of probiotics supplementation on the side effects of chemo radiotherapy for colorectal cancer: a literature review

Lana M. Agraib¹, Alaa Al-Shorman¹, Samer Salah², Ramiz Abu-hijlih³, Fawzi Abuhijla³

¹ Department of Nutrition and Food Technology, The University of Jordan, Amman, Jordan

² Department of Medical Oncology, King Hussein Cancer Centre, Amman, Jordan

³ Department of Radiation Oncology, King Hussein Cancer Centre, Amman, Jordan

Colorectal Cancer (CRC) is fourth leading cause of cancer-related deaths (8.5%) and ranks as the second most common cancer among women (9.2%) and the third among men (10.0%) worldwide. The main treatments modalities for CRC as all the different types of cancer are surgery, radiation therapy, and chemotherapy. However, such treatments (mainly radio and chemotherapy) have several side effects which cannot be ignored and mainly presented as gastrointestinal toxicity that include infections, mucositis, enteritis, diarrhoea, nausea and vomiting. Probiotics are one of Biological Radio protectors (BRPs) that have been reported to preserve gastrointestinal tract in patients treated with radiotherapy and/or chemotherapy. The main use of probiotics as BRPs is treatment of intestinal toxicity and inflammation induced by radiotherapy, chemotherapy or surgical interventions. These effects may explain by different abilities of the probiotics such as synergistic activity, toxin neutralization, antioxidant property, antagonistic activity, and immune system stimulation. Moreover, the probiotic effect on reducing the side effects during radio- chemotherapy may improve the quality of life in CRC patients during and after the treatment. Further studies on uses of probiotic to improve immune system, inflammatory response and the exact doses with optimum combination of strains to reduce or prevent the side effects occur during treating CRC is needed.

Key words: colorectal cancer, probiotics, radiotherapy, chemotherapy

Address for correspondence:

Fawzi Abuhijla, Department of Radiation Oncology, King Hussein Cancer Centre, Queen Rania St., Post Code 11941, Amman, Jordan, email: fhijle@khcc.jo

Word count: 7188 Tables: 01 Figures: 00 References: 106

Received: - 17 June, 2020

Accepted: - 14 July, 2020

Published: - 20 July, 2020

INTRODUCTION

Colorectal Cancer (CRC) is a multi-factorial disease that occur in the colon (mainly the sigmoid part) and the rectal. CRC has hereditary and non-hereditary types; the later type is the most frequent worldwide that caused mainly by somatic mutation as a result of environmental factors [1]. CRC is accounting for 9.7% of cancer incidences, and the fourth leading cause of cancer-related deaths (8.5%) worldwide as reported by the World Health Organization (WHO). Based on gender, CRC ranks as the second most common cancer among women (9.2%) and the third among men (10.0%) worldwide [2]. The incidence of CRC is associated with several modifiable and non-modifiable risk factors. The non-modifiable risk factors, which cannot be controlled, include genetic factors (family history, inflammatory bowel disease, and hereditary syndrome), age, gender and ethnicity [3, 4]. The modifiable risk factors include diet and dietary habits, lifestyle, inflammation, physical inactivity, the consumption of tobacco and alcohol, and as recently reported the gut microbiota imbalances [5]. The main treatments modalities for different types of cancer including CRC are surgery, radiation therapy, and chemotherapy [6]. The effectiveness of radiotherapy by itself or combined with chemotherapy has been proven to be the foundation in treating cancer patients including CRC patients [7]. However, radio and chemo-therapy have several side effects which cannot be ignored and mainly presented as gastrointestinal toxicity that include mucositis, enteritis, diarrhoea, nausea and vomiting [8]. Some of these effects are related to mucosal damage by ionizing radiation with subsequent alteration of intestinal flora, accelerated small and large bowel transit, and malabsorption of bile salts [9, 10]. The radiation also induces diarrhoea that causes changes in the intestinal flora and intestinal motility that contribute to impaired secretion, absorption and immune function of the digestive tract [11]. Moreover, some of these effects persist even after the conclusion of radiotherapy which may decline patient quality of [12, 13].

The Food and Agriculture Organization (FAO) and the WHO nutritional guidelines have defined probiotics as "live microorganisms when administered in adequate quantities confer a health profit to the host cell" [14-16]. Food and Drug Administration of the USA (FDA) endorses probiotics for their null safety issues, based on that probiotics have become a typical ingredient in many formulations and traditional foods as well as

beneficial effects as radio protectors have been reported from so, abdominal cramping or pain, decreased appetite, intestinal tract in patients treated with radiotherapy [20]. Moreover, it from cancer leads to anaemia (low number of red blood cells), has been reported that probiotics have different abilities such which resulting in symptoms such as weakness, dizziness and antagonistic activity, and immune system stimulation [21]. In appear until it is advanced, screening could help decreasing CRC attenuate inflammatory responses, improve the intestinal precancerous lesions (polyps) that can be removed, as well microbial environment and reduce infectious complications were as detect some cancers early, when treatment is more often only studied in few researches on preoperative and postoperative successful [38]. The 5-year relative survival rate of CRC is 65%, treatment among CRC patients [22, 23]. Therefore, the increased with early detection before spreading to 92%, which objective of this review was to summarize the current research mean that at least 9 out of 10 people with early-stage cancer in using probiotics to prevent and/or reduces the side effects of survive at least for 5 years. CRC treatments.

LITERATURE REVIEW

Colorectal Cancer (CRC)

CRC is one of the leading causes of mortality and morbidity worldwide (accounts for over 8% of all deaths annually) [24, 25]. Although the early detection of precancerous polyps significantly reduces the incidence of CRC [26], studies indicated that CRC is the third most common cancer after lung and breast cancers, and the fourth most common cause of cancer-related death, after lung, liver and stomach cancers [27]. CRC is the second most commonly diagnosed cancer in females and the third in males. It also accounts for over 9% cancer incidences, with 1.4 million cases occurring in 2012 worldwide [28]. In 2018, the total incidences of CRC worldwide were 18.1 Pathophysiology of CRC: The intestinal epithelium is a million with 0.5 million new case [29], and with the spread of Western lifestyles CRC rates globally are expected to increase to 1.7 million by 2020 [30]. CRC known to be the disease of developed countries, however, due to shifting the behaviours and lifestyle in the developing countries to word westernization, the incidence in these countries has increased [31]. The exact causes of the most majority of CRCs still unknown, as it heterogeneous disease, however, the risk of CRC is associated with several risk factors include: family history of CRC, personal history of adenomatous polyps (precursor lesion of CRC) and inflammatory bowel disease, smoking, age (90% of diagnosed cases are $50 \leq$ years old), gender (higher in male more than female), race (black population over white population), personal habit of alcohol consumption, lower socioeconomic status, obesity, physical inactivity, diets that high in meat, fat and low in fibre, and inherited syndromes (which account for only 2%-5% of all CRC cases) [32,33]. More than 80% of the incidence of colorectal neoplasms, occur sporadically, as a result of the interaction between the lifestyle and environmental factors with genetic factor that generate sequential accumulation of Hyperplastic polyps histologically comprise increased number of somatic mutations causing genomic instability that lead to CRC development [34].

Signs, symptoms and screening of CRC: CRC in early stage typically does not has symptoms, the symptoms often appear only after the growth and spreading of cancer [35]. The Signs and symptoms of CRC include rectal bleeding, blood in the stool, change in bowel habits like diarrhoea, constipation, or narrowing of the stool that continue for more than few days, the patient feeling of the bowel as not completely empty with Based on the origin of the mutation, colorectal carcinomas can

the first Biological Radio Protectors (BRPs) [17-19]. Probiotics need to have a bowel movement that is not relieved by doing investigations that used probiotics to preserve gastrointestinal obstruction, and weight loss. Sometimes the blood loss resulting as synergistic activity, toxin neutralization, antioxidant property, fatigue [36, 37]. As the symptoms of CRC usually does not addition, the uses of probiotics to enhance immune responses, mortality, prevent and reduce CRC incidence by identifying

> Therefore, American Cancer Society new guidelines recommend regular CRC screening for people at average risk to begin at 45 years of age and continue up to age 85 depending on their health status and/or their life expectancy. Individuals with firstdegree relatives with CRC or who have certain other risk factors, should begin screening at younger age [39]. Evidence support that considering the screening for CRC as a part of routine care for all adults aged 45 years and older, especially those with family history of CRC, through the adherence to either of the two types of testing (stool or structural exams) is important as the screening tests are relatively simple, accurate, resulting in reducing the incidence of the disease in those people, increasing the ability to identify high-risk groups, lowering the growth of primary lesions, and improving the survival rates of patients at early-stage lesions.

> hotspot for malignant transformations such CRC as it has a high turnover rate [1]. CRC results from complex interactions between inherited susceptibility and environmental factors [39]. The CRC start from development of specific types of colonic mucosa neoplastic polyps, called neoplastic polyps, colorectal neoplasms, or adenocarcinoma polyps (glandular cells in the wall of the colon and rectal) [40]. The neoplastic polyps grow slowly to invasive adenocarcinoma as a result of mutations activated by environmental/exogenous (e.g.: lifestyle factors), which caused and targeted mutations, activations, or deletions of oncogenes, tumour suppressor genes and/or genes related to DNA repair mechanisms such as genes including Adenomatous Polyposis Coli (APC), K-ras and TP53, through adenoma-tocarcinoma sequence [41].

> Polyp histology is the critical parameter to be used for determining malignant potential in term of natural history [40]. Hyperplastic and adenomatous are the two most common types of histology and most CRC rise from adenomatous polyps [41]. glandular cells with decreased cytoplasmic mucus, however, its generally lack nuclear hyperchromatic, stratification, or atypia [42]. On the other hand, adenomatous nuclei (Adenomas) are histologically classified as tubular or villous and it's usually characterized as hyperchromatic, enlarged, cigar-shaped, and crowded together in a palisade pattern. The villous adenomas contain digit form villi arranged in a frond, whereas tubular adenomas are composed of branched tubules [43].

(25%) [1, 27]. Sporadic cancer has a heterogeneous molecular (II, III) where the cancer has penetrated the bowel wall deeply pathogenesis as mutations can target different genes. But, or spread to lymph nodes, the neoadjuvant chemoradiotherapy most of this type of CRC cases follow a specific sequence of is given either before the surgery to shrink tumors or following mutations, first of them mutation occurs in APC. APC is a surgery to destroy small amounts of remaining cancerous tissue. tumour suppressor gene, that triggering the formation of non- The radiation therapy done either using external beams or malignant adenomas, and also called polyps. This followed by surgically implanted radioactive pellets [36]. mutations in KRAS, TP53 and, finally, DCC [44]. Inherited cancers, classified to two groups, polyposis form which involves Familial Adenomatous Polyposis (FAP), that characterized by the development of multiple potentially malignant polyps in the colon [45]. And non-polyposis form or Hereditary Non-Polyposis Colorectal Cancer (HNPCC), which related to mutations in DNA repair mechanisms and mainly caused by Lynch syndrome, that found in 2%-3% of all colorectal cancer cases, and result from inherited mutations in one of the alleles coding for DNA repair proteins such as MSH2, MLH1, MLH6, PMS1 and PMS2 [46]. The Familial colorectal cancer is also caused by inherited mutations, but they are not classified as inherited cancers per se as they cannot be included in any inherited cancer variant.

architecture and cytological features CRC are classified as the current treatments can significantly reduce the quality of well-differentiated, moderately well differentiated, or poorly life [54]. Therefore, emerging therapeutic strategies have been differentiated [47]. Progressively, more poor differentiation proposed, including Capecitabine [55], Immunotherapy and is a histologic marker that induct further sever underlying antibodies such as the monoclonal Epidermal Growth Factor genetic mutations, with almost 20% of CRC are poorly Receptor (EGFR) antibody "Cetuximab", which a newer option differentiated. However, the mutations which associated with for some advanced cancers [56]. Probiotics have been also poor differentiation currently are unknown [47].

correlates highly with cancer prognosis [48].

Treatments of CRC

The treatment of CRC can be aimed either to cure or palliate the disease, depending on various factors such as the patient health and preferences, stage, site of the cancer, and the degree of spreading [51]. The current treatments for CRC include surgery, **Probiotics** chemotherapy, and radiotherapy [52]. In the case of localized colon or rectum cancers, surgery is the most common treatment As the demands for healthy and functional foods that promote required. For early stage of CRC, a colonoscope may be used health and prevent or cure illness increased during the last to remove the cancerous tissue or cancerous polyp/polyps, plus decades, probiotics have received attention in the field of self-

be classified as sporadic (70%); inherited (5%) and familial surrounding tissues and nearby lymph nodes. For advance stages

The metastatic colorectal cancer, which cancer has spread to other parts of the body, treatments typically include palliative chemotherapy and/or targeted therapy. The World Health Organization define the palliative care, as care that primarily aims to improve the quality of life of patients by the early identification, assessment, and treatment of physical, psychosocial, and spiritual issues. Palliative care can involve either treatments that directed at limiting tumor growth and associated symptoms (eg, pain), and/or treatments solely intended to relieve symptoms (ie, physical, emotional, and spiritual), which can prolong patients' life in case of CRC to >2 years overall survival [53]. However, these treatments are associated with high risk complications and are not proven to be successful in all cases, highlighting the need to develop new According to the degree of preservation of normal glandular treatment strategies. Moreover, investigations reported that proposed as another emerging therapeutic option.

Stages of CRC: There are two frequently used classification for The side effects of cancer chemo-radiotherapy treatment: staging of CRC, Dukes' classification (the most commonly used), Many side effects from gastrointestinal radiation can occur and Tumour, Node Metastases (TNM) classification (recently during or soon following radiotherapy. These symptoms are used) [48]. Dukes' classification is most commonly and staged attributed to acute mucosal injury and inflammation. Acute cancer from A through D, with stage A means penetrating beyond radiation injury to the rectum and anal canal can result in a the muscular is mucosa into the submucosa, stage B1 extends range of symptoms such as abdominal pain, diarrhoea, fatigue, means penetrating beyond the submucosa into the muscularis tenesmus, rectal pain, urgency, rectal discharge, incontinence, propria; stage B2 mean extends through the muscularis propria and fresh rectal bleeding. These symptoms occur primarily as into the serosa; stage C include regional lymph node metastases; a result of direct mucosal damage [57-59]. Acute radiation and stage D include distant Metastases [49]. TNM classification injury to the colon can be severe and in 5%-15% can lead to staging the cancer by mural depth of the primary tumour (T), therapy interruption or treatment plan alteration [60]. Delayed presence of local lymph node metastases (N), and the presence symptoms present a few months or years after radiotherapy of distant metastases (M), which make it helpful particularly and are associated with chronic process of transmural fibrosis in endosonographic staging of CRC [50]. The invasive colon and vascular sclerosis. Abayomi and colleagues [61] reported cancer in the TNM classification is classified from stage I to IV, that 47% of women who received radiotherapy for cervical or where stage I in the TNM classification corresponds to Dukes' endometrial cancer suffer from symptoms of radiation intestinal A or B1 lesions, stage II corresponds to Dukes' B2 lesion, stage injury affecting quality of life within 3 months following III corresponds to Dukes' C lesion, and stage IV corresponds to therapy completion. These results are consistent with a previous Dukes' D lesion. Pathologic stage, as classified by either scheme, structured questionnaire study which showed that 53% of patients had reported bowel symptoms significantly affecting their quality of life, while 81% of patients in the study described new-onset gastrointestinal problems after starting radiotherapy [62]. The severity of injury depends on the radiation dose and the volume of intestinal segment that falls within the radiation field [63, 64].

care and complementary medicine [65]. The word "probiotic" aspects of probiotics: microbial, viable, and beneficial to health,

comes from the Greek words "pro" and "biotic," meaning "for to became "live microorganism that, when administered in the life". In 2001, the Food and Agriculture Organization/ adequate amounts, confer a health benefit on the host" [67]. World Health Organization (FAO/WHO) defined probiotics Microorganisms that are considered as probiotics should have as "live microorganisms which, when administered in adequate several characteristics including resistance to gastrointestinal amounts confer a health benefits on the host" [66], and this environment (low pH and bile salt), antimicrobial activity, concept was updated in 2013 to include the three main key multidrug resistance, and antioxidant activity [68]. The chief

Tab. 1. Studies	Study	Main objective	Study design	Sample	Treatment type	Probiotics used	Main outcome
conducted on probiotic role in treating and prevention the side effect of CRC treatments from 2005-2019	Osterlund <i>et</i> al. [97]	To assess the efficacy of probiotics on 5-FU-based chemotherapy toxicity	Randomized, phase III, single institution, 2*3 factorial design (duration: 24weeks)	patients,	Chemotherapy intervention	Lactobacillus rhamnosus GG (1-2 × 10 ¹⁰)	Probiotics daily oral administration reported in reducing the frequency of severe 5-FU- based chemo- therapy related diarrhea
	Mego <i>et al.</i> [98]	To determine the effectiveness of the probiotics in the prevention of irinotecan induced diarrhoea due to reduction of intestinal beta-D- glucuronidase activity	Randomized, double blind, placebo- controlled study (duration: 12 weeks)	46 CRC patients aged 42-81 years.	Chemotherapy	Colon Dophilus (Bifidobacterium breve HA-129, Bifidobacteriumbifidum HA-132 HA, Bifidobacterium longum HA-135, Lactobacillus rhamnosus HA- 111, Lactobacillus acidophilus HA-122, Lactobacillus casei HA-108, Lactobacillus plantarum HA- 119, Streptococcus thermopilus HA-110, Lactobacillus brevis HA- 112, Bifidobacterium infantis HA-116. Additives includes: inulin, maltodextrine, magnesium stearate, ascorbic acid) (10 × 10 ⁹)	Probiotics reported to be safe and might lead to a reduction in the incidence and severity of gastrointestinal toxicity
	Gianotti <i>et al.</i> [99]	To investigate whether probiotics might adhere to the colonic mucosa, reduce concentration of pathogens in stools, and modulate the local immune function.	A randomized, double blind clinical trial (duration: 7 days)	31 CRC patients aged 53-74 years.	Surgical intervention	Lactobacillus johnsonii and Bifidobacterium longum (2 × 10 ⁷⁻ 2 × 10 ⁹)	Probiotics reported to adhere to the colonic mucosa and affects intestinal microbiota by reducing the concentration of pathogens and modulates local immunity
	Ohigashi <i>et al.</i> [100]	To investigate the functional outcome and health- related quality of life of patients who underwent a surgical resection of colorectal	Intervention study (duration: 3 months)	A 124 CRC patients aged 54-79 years.	Chemotherapy and surgical intervention	Bacillus natto (10 mg) and Lactobacillus acidophilus (30 mg)	Probiotics reported to be an effective treatment for improvement in functional outcome and quality of life after colorectal resection

Liu <i>et al</i> . [101]	To determine the effects of perioperative administration of probiotics on the gut barrier function and the surgical outcome in patients undergoing elective colorectal surgery	Randomized placebo- controlled trial (duration: 6 days intervention)	100 CRC patients aged 51-76 years.	Surgical intervention	Lactoba-cillus plantarum, Lactobacillus acidophilus, Bifido- bacterium longum (0.5-0.7 × 10 ¹⁰)	Probiotics reported to improve the integrity of gut mucosal barrier by benefiting the faecal microbiota, and decreasing infectious complications in patients with CRC undergoing colorectomy
Zhang <i>et al.</i> [102]	To elucidate the effects of oral bifid triple viable probiotics among patients with CRC.	Randomized controlled study (duration: 8 days preoperative intervention)	60 CRC patients aged 45-87 years.	Surgical intervention	B longum, L acidophilus and Enterococcus faecalis (3 × 10 ⁸)	Probiotics reported to minimize the postoperative occurrence of infectious complications, with possible mechanisms attributed to the maintenance of the intestinal flora and restriction of bacterial translocation from the intestine
Liu <i>et al.</i> [103]	To determine the effects of the perioperative administration of probiotics on serum zonulin concentrations and the subsequent effect on postoperative infectious complications in patients undergoing colorectal surgery	Randomized placebo- controlled trial (duration: 16 days intervention)	150 CRC patients aged 50-77 years.	Surgical intervention	Lactoba-cillus plantarum, Lactobacillus acidophilus, Bifido- bacterium longum (0.5-0.7 × 10 ¹⁰)	Perioperative probiotic treatment reported to reduce the rate of postoperative septicemia and associated with the reduction of serum zonulin concentrations in patients undergoing colectomy
Lee <i>et al</i> . [104]	To investigate the effects of 12 weeks of probiotics administration in colorectal cancer patients	Randomized, double blind, placebo- controlled study (duration: 12 weeks)	60 CRC patients aged 45- 67 years.	Chemotherapy or chemo +radiotherapy	L. rhamnosus R0011 and L. acidophilus R0052 (2 × 10°)	Probiotics reported to improve bowel symptoms as well as quality of life in CRC survivors Probiotics
kotzampassi <i>et</i> al. [105]	To assess the efficacy of probiotics as prophylaxis for complications after colorectal surgery	Randomized, double blind, placebo- controlled study (duration: 17 days intervention)	164 CRC patients aged 56-78 years.	Surgical intervention	Lactobacillus acidophilus LA- 5, Lactobacillus plantarum, Bifidobacterium lactis BB-12 and Saccharomyces boulardii (9 × 10 ⁹)	reported to decrease the risk of postoperative complications, including mechanical ventilation, infections and anastomotic leakage

Yang <i>et al.</i> [106]	To evaluate the anti-infective effects of perioperative probiotic treatment in patients receiving confined CRC respective surgery	Randomized, double blind, placebo- controlled study (duration: 12 days)	60 CRC patients aged 51-76 years	Surgical intervention	Bifidobacterium longum (≥ 1.0 ×10 ⁷ cfu/g), Lactobacillus	Perioperative probiotic administration significantly influenced the recovery of bowel function, which might be important clinical significance in reducing the short-term infectious complications such as bacteremia
-----------------------------	---	---	--	--------------------------	--	---

acid bacteria group [69, 70].

Probiotics Health Benefits: The human Gastrointestinal Tract The effects of probiotics on colorectal cancer treatment (GIT) is a complex microbial ecosystem inhabited by more and treatment side effects: Probiotics are the first Biological than 400 bacterial species, which can be influenced by different Radioprotectors (BRPs) [7]. BRPs can be defined as "any living factors, and one of the most important factors is the diet of biological systems and processes that can modify the radiation the host [71, 72]. Recent scientific research showed that the responses of biological tissues" and act through their actions as deficiency or imbalance of intestinal microbiota leads to some antioxidants, anti-inflammation, anti-apoptosis and anti-aging of the infections and disorders. Probiotics have been considered as one of control strategies for several gastrointestinal disorders such as GIT infections, constipation, irritable bowel syndrome, inflammatory bowel disease (Crohn's disease and ulcerative colitis), antibiotic-induced diarrhoea, food allergies, and certain cancers such as colorectal cancer [73].

The health promoting benefits of probiotics include modulation of the immune system reducing colitis and inflammation, antioxidant activity, toxin-binding and detoxification activity, maintenance of mucosal integrity, decreasing incidence and duration of diarrhoea, and regulation of gut motility to control constipation or irritable bowel syndrome [74-76]. Additionally, probiotics may reduce allergy symptoms, improve nutrient absorption, alleviate symptoms of lactose intolerance, and produce beneficial compounds, such as vitamins, Short-Chain Fatty Acids (SCFAS), and conjugated linoleic acid [77-81].

Probiotics Role in Colorectal Cancer (CRC): Anti-cancer properties of probiotics have been emphasized in recent years [82, 83], and the ingestion of probiotics represent a novel new therapeutic option for CRC [52]. Oral administration of probiotics was found to normalize the intestinal microflora by altering and suppressing the growth of microbiota implicated To prevent the side effects of chemo-radiotherapy, different in the production of mutagens and carcinogens and increasing the concentrations of beneficial bacteria such as Lactobacillus and Bifidobacterium, [84]. Furthermore, it improves the GIT barrier and enhances the local and systemic immune or/and anti-inflammatory activities, that lead in reducing the levels of pathogenic micro-organisms and protection of DNA from oxidative damage, all of which play a part in the suppression of head and neck cancer patients treated with and result in strong tumour formation and growth [85, 86].

neoplasia and reduce the invasion and metastasis of cancer cells 4 strains of Lactobacillus, found to prevent the gastrointestinal [87, 88]. These effects and mediated by decreasing the intestinal toxicity of chemotherapy and radiotherapy and give a strong inflammation, enhancing the immune function and anti- effect [97].

and most widely used probiotics bacterial species belong to the tumorigenic activity, preventing biofilm formation, and binding genera Lactobacillus and Bifidobacterium, which belong to lactic to potential food carcinogens including toxins found in meat products [89].

agents [90].

The main use of probiotics as BRPs is treatment of intestinal toxicity and inflammation induced by radiotherapy alone, chemotherapy alone, combined chemotherapy and radiation or surgical interventions [91]. Table 1 summarizes the studies conducted between 2005-2019 on uses of probiotics to prevent, treat or reduces the side effects of different CRC treatments. Several clinical trials with varying design, patient populations and probiotics products have been stated that cancer patients who received probiotics during radiation therapy revealed fewer episodes of high-grade diarrhoea and less abdominal discomfort, and therefore, improving their quality of life [92].

It has been reported that probiotics might provide a favourable role to reduce the GIT toxicity and inflammation induced by radiotherapy [93]. Probiotics down regulate NF-KB activity, which balances the production of TNF- α and other proinflammatory cytokines and production of antioxidant enzymes (e.g. glutathione peroxidase, superoxide dismutase and catalase). Therefore, free-radical scavenging is the main mechanism of which using of probiotics protect from radiation side effects [94-96].

doses of probiotics were used. For example, Mego et al. [95] used 6-18 \times 10⁹ per day of *Enterococcus faecium* M-74 to prevent the febrile neutropenia among testicular cancer and acute leukemia patients, which revealed no effect. Sharma et al. [96] used at least 2×10^9 six time per day of *Lactobacillus brevis* CD2 lozenges to prevent radiation-induced mucositis among effect. For colorectal cancer, consumption a dose of 1-3 ×1010 per day of Lactobacillus rhamnosus GG1 or probiotic formula Probiotics may inhibit the development and progression of Colon Dophilus, which contain 4 strains of Bifidobacterium and

CONCLUSION AND FUTURE DIRECTIONS

The use of probiotics may reduce different side effects of CRC the CRC treatments side effects are required. chemo-radiotherapy treatment, and therefore, improving the patient's quality of life. Further interventional studies aiming FUNDING SOURCES to investigate the effectiveness of probiotics supplementation intervention in reducing inflammatory markers and the side effects of radiation therapy as well as enhancing the immune system response and the quality of life among CRC patients who undergo chemo-radiotherapy are needed. Moreover, studies providing sold base of using probiotics as adjuvant therapy for CRC patients and other types of cancer to reduce the side effects ACKNOWLEDGMENT of radiotherapy and to enhance the immune system as well as improving their quality of life are recommended. Studies that None

clearly define the exact dose needed and beast combination of different probiotics strains to be used for preventing or reducing

None

CONFLICT OF INTEREST STATEMENT

The authors declare that there is no conflict of interest.

Aran V, Victorino AP, Thuler LC, Ferreira CG. Colorectal cancer: 1. epidemiology, disease mechanisms and interventions to reduce onset and mortality. Clinical Colorectal Cancer. 2016;15:195-203.

REFERENCES

- 2. Stewart BWKP, Wild CP. International Agency for Research on Cancer (IARC). World Health Organization. 2017.
- 3. Macrae FA. Colorectal cancer: epidemiology, risk factors, and protective factors. 2015.
- Ambalam P, Raman M, Purama RK, Doble M. Probiotics, prebiotics and 4. colorectal cancer prevention. Best Pract Res Cl Ga. 2016;30:119-131
- Russo E, Bacci G, Niccolai E, Taddei A, Ricci F, et al. Functional 5. characterization of specific immune response and comparison of oral and intestinal human microbiota in patients with colorectal cancer after treatment with probiotic/prebiotic. Bioactive Compounds Health Dis. 2018:1:47-48.
- Scheer A, Auer RAC. Surveillance after curative resection of colorectal 6. cancer. Clin Colon Rectal Surg. 2009;22:242-250.
- Abdollahi H, Shiri I, Atashzar M, Sarebani M, Moloudi K, et al. 7. Radiation protection and secondary cancer prevention using biological radioprotectors in radiotherapy. Intern J Cancer Therap Oncol. 2015:3:335-344.
- 8. Ciorba MA, Hallemeier CL, Stenson WF, Parikh PJ. Probiotics to prevent gastrointestinal toxicity from cancer therapy: an interpretive review and call to action. Curr Opin Support Pa. 2015;9:157-162.
- Mego M, Holec V, Drgona L, Hainova K, Ciernikova S, et al. Probiotic 9 bacteria in cancer patients undergoing chemotherapy and radiation therapy. Complement Ther Med. 2013;21:712-723.
- 10. De Coaña YP, Choudhury A, Kiessling R. Checkpoint blockade for cancer therapy: revitalizing a suppressed immune system. Trends Mol Med. 2015;21:482-491.
- Giralt J, Regadera JP, Verges R, Romero J, De la Fuente I, et al. 11. Effects of probiotic Lactobacillus casei DN-114 001 in prevention of radiation-induced diarrhea: results from multicenter, randomized, placebo-controlled nutritional trial. Intern J Radiation Oncol Biol Physics. 2008;71:1213-1219.
- 12. Liu MM, Li ST, Shu Y, Zhan HQ. Probiotics for prevention of radiationinduced diarrhea: A meta-analysis of randomized controlled trials. PloS One. 2017;12:e0178870.
- Fokdal L, Høyer M, Meldgaard P, Von der Maase H. Long-term bladder, 13. colorectal, and sexual functions after radical radiotherapy for urinary bladder cancer. Radiotherap Oncol. 2004;72:139-145.
- Araya M, Morelli L, Reid G. Guidelines for the evaluation of probiotics in 14. food. Joint FAO/WHO Working Group report on drafting guidelines for the evaluation of probiotics in food, London. 2002.
- 15. Food and Agriculture Organization (FAO), World Health Organization (WHO). Report of a joint FAO/WHO expert consultation on evaluation of Nolfo et al. BMC Surgery. 2013;13:S16.
- Nolfo F, Rametta S, Marventano S, Grosso G, Mistretta A, et al. 16. Pharmacological and dietary prevention for colorectal cancer. BMC Surg. 2013:13:S2-S16.
- 17. Patel S, Goyal A. Evolving roles of probiotics in cancer prophylaxis and therapy. Probiotics Antimicro. 2013;5:59-67.

- 18. Scartoni D, Desideri I, Giacomelli I, Di Cataldo V, Di Brina L, et al. Nutritional supplement based on zinc, prebiotics, probiotics and vitamins to prevent radiation-related gastrointestinal disorders. Anticancer Res. 2015;35:5687-5692
- 19. Dasari, S, Kathera C, Janardhan A, Kumar AP, Viswanath B. Surfacing role of probiotics in cancer prophylaxis and therapy: A systematic review. Clin Nutri. 2016;36:1465-1472.
- Theis VS, Sripadam R, Ramani V, Lal S. Chronic radiation enteritis. Clin 20. Oncol. 2010;22:70-83.
- Kanmani P, Satish Kumar R, Yuvaraj N, Paari KA, Pattukumar V, et al. 21. Probiotics and its functionally valuable products-A review. Critical Rev Food Sci Nutri. 2013;53:641-658.
- 22. Sugawara G, Nagino M, Nishio H, Ebata T, Takagi K, et al. Perioperative synbiotic treatment to prevent postoperative infectious complications in biliary cancer surgery: a randomized controlled trial. Annals Surg. 2006;244:706-714.
- 23. Zhang JW, Du P, Yang BR, Gao J, Fang WJ, et al. Preoperative probiotics decrease postoperative infectious complications of colorectal cancer. Am J Med Sci. 2012;343:199-205.
- 24. Torre A, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, et al. Global cancer statistics, 2012. CA: A Cancer J Clin. 2015;65:87-108.
- 25. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Intern J Cancer. 2015;136:E359-E386.
- 26. Haggar FA, Boushey RP. Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. Clin Colon Rectal Surg. 2009;22:191-197.
- 27. Mármol I, Sánchez-de-Diego C, Pradilla Dieste A, Cerrada E, Rodriguez Yoldi M. Colorectal carcinoma: a general overview and future perspectives in colorectal cancer. Intern Mol Sci. 2017;18:197.
- 28. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Intern J Cancer. 2010:127:2893-2917.
- Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, et al. 29. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Intern J Cancer. 2018;144:1941-1953.
- 30. Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, et al. Global patterns and trends in colorectal cancer incidence and mortality. Gut. 2017;66:683-691.
- Favoriti P, Carbone G, Greco M, Pirozzi F, Pirozzi REM, et al. Worldwide 31. burden of colorectal cancer: a review. Updates Surg. 2016;68:7-11
- Stoffel EM, Kastrinos F. Familial colorectal cancer, beyond Lynch 32 syndrome. Clin Gastroenterol Hepatol. 2014;12:1059-1068.
- Padmanabhan S, Waly MI, Taranikanti V, Guizani N, Rahman MS, et al. 33. Modifiable and non-modifiable risk factors for colon and rectal cancer. In bioactive components, diet and medical treatment in cancer prevention. Springer. 2018.
- 34. Huycke MM, Gaskins HR. Commensal bacteria, redox stress, and colorectal cancer: mechanisms and models. Experiment Biol Med. 2004:229:586-5971

- Majumdar SR, Fletcher RH, Evans AT. How does colorectal cancer | 60. present? Symptoms, duration, and clues to location. Am J Gastroenterol. 1999;94:3039.
- American Cancer Society. https://www.cancer.org/content/dam/cancerorg/research/cancer-facts-and-statistics/annual-cancer-facts-andfigures/2019/cancer-facts-and-figures-2019.pdf (2019a).
- American Cancer Society. Signs and Symptoms of Colorectal Cancer. Atlanta, Ga: American Cancer Society. https://www.cancer.org/latestnews/signs-and-symptoms-of-colon-cancer. (2019b).
- American Cancer Society. Can Colorectal Polyps and Cancer Be Found Early? Atlanta, Ga: American Cancer Society. https://www.cancer.org/ cancer/colon-rectal-cancer/detection-diagnosis-staging/detection.html. (2019c).
- Screening PDQ, Board PE. Colorectal Cancer Screening (PDQ®). In PDQ Cancer Information Summaries. National Cancer Institute (US). 2018.
- Cappell MS. The pathophysiology, clinical presentation, and diagnosis of colon cancer and adenomatous polyps. Medical Clinics. 2005;89:1-42.
- Cappell MS. Pathophysiology, clinical presentation, and management of colon cancer. Gastroenterol Clin North Am. 2008;37:1-24.
- Tsai CJ, Lu DK. Small colorectal polyps: histopathology and clinical significance. Am J Gastroenterol. 1995;90:988-994.
- Rubin CE, Bronner MP. Endoscopic mucosal biopsy: a memorial to Rodger C. Haggitt, MD In: Yamada T, Alpers D, Kaplowitz N, et al, editors. Textbook of gastroenterology. 2003.
- Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis Cell. 1990;61:759-767.
- Lynch HT, De la Chapelle A. Hereditary colorectal cancer. N Engl J Med. 2003;348:919-932.
- Umar A, Boland CR, Terdiman JP, Syngal S, Chapelle ADL, et al. Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J National Cancer Inst. 2004;96:261-268.
- Hassan C, Zullo A, Risio M, Rossini FP, Morini S. Histologic risk factors and clinical outcome in colorectal malignant polyp: a pooled-data analysis. Dis Colon Rectum. 2005;48:1588-1596.
- Amin MB, Edge SB, Greene FL, Byrd DR, Brookland RK, et al. AJCC cancer staging manual. 8th ed. New York: Springer. 2017
- Fisher ER, Sass R, Palekar A, Fisher B, Wolmark N, et al. Contributing National Surgical Adjuvant Breast And Bowel Projects Investigators. Findings from the national surgical adjuvant breast and bowel projects (protocol r-01). Cancer, 1989;64:2354-2360.
- Weiser MR. AJCC 8th edition: Colorectal cancer. Ann of surgical oncology, 2018;25:1454-1455.
- Stein A, Atanackovic D, Bokemeyer C. Current standards and new trends in the primary treatment of colorectal cancer. Eur J Cancer. 2011;47:S312-S314.]
- Geier MS, Butler RN, Howarth GS. Probiotics, prebiotics and synbiotics: a role in chemoprevention for colorectal cancer? Cancer Biol Therap. 2006;5:1265-1269.
- Engelhardt EG, Révész D, Tamminga HJ, Punt CJ, Koopman M, et al. Clinical usefulness of tools to support decision-making for palliative treatment of metastatic colorectal Cancer: a systematic review. Clin Colorectal Cancer. 2018;17:e1-e12.
- Van Cutsem E, De Gramont A, Henning G, Rougier P, Bonnetain F, et al. Improving outcomes in patients with CRC: the role of patient reported outcomes-An ESDO Report. Cancers. 2017;9:59-67.
- Yerushalmi R, Idelevich E, Dror Y, Stemmer SM, Figer A, et al. Preoperative chemoradiation in rectal cancer: retrospective comparison between capecitabine and continuous infusion of 5-fluorouracil. J Surg Oncol. 2006;93:529-533.
- Wong SF. Cetuximab: an epidermal growth factor receptor monoclonal antibody for the treatment of colorectal cancer. Clin Therap. 2005;27:684-694.
- Nussbaum ML, Campana TJ, Weese JL. Radiation-induced intestinal injury. Clin Plastic Surg. 1993;20:573-580;
- Babb RR. Radiation proctitis: a review. Am J Gastroenterol. 1996;91:1309-1311.
- Schultheiss TE, Lee WR, Hunt MA, Hanlon AL, Peter RS, et al. Late GI and GU complications in the treatment of prostate cancer. Intern J Radiation Oncol Biol Physics. 1997;37:3-111

- . Hauer-Jensen M, Fink LM, Wang J. Radiation injury and the protein C pathway. Critical Care Med. 2004;32:S325-S3301
- Abayomi J, Kirwan J, Hackett A.The prevalence of chronic radiation enteritis following radiotherapy for cervical or endometrial cancer and its impact on quality of life. Eur J Onco Nurs. 2009;13:262-267.
- Gami B, Harrington K, Blake P, Dearnaley D, Tait D, et al. How patients manage gastrointestinal symptoms after pelvic radiotherapy. Aliment Pharmacol Therap. 2003;18:987-9941
- Miller AR, Martenson JA, Nelson H, Schleck CD, Ilstrup DM, et al. The incidence and clinical consequences of treatment-related bowel injury. Intern J Radiation Oncol Biol Phy. 1999;43:817-825.
- Miller KD, Siegel RL, Lin CC, Mariotto AB, Kramer JL, et al. Cancer treatment and survivorship statistics. CA: A Cancer J Clin. 2016;66:271-289.
- Shokryazdan P, Faseleh Jahromi M, Liang JB, Ho YW. Probiotics: from isolation to application. J Am College Nutri. (2017a);36:666-676.
- 66. Food and Agriculture Organization/World Health Organization. "Report of a joint fao/who expert consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria." Cordoba, Argentina. 2001.
- 67. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, et al. Expert consensus document: the international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11:506-514.
- Biradar YS, Jagatap S, Khandelwal KR, Singhania SS. Exploring of antimicrobial activity of triphala mashi-an ayurvedic formulation. Evidence-Based Complement Alternat Med. 2008;5:107-113.
- Ritchie ML, Romanuk TN. A meta-analysis of probiotic efficacy for gastrointestinal diseases. PLoS One. 2012;7:e34938.
- Sharif MK, Mahmood S, Ahsan F. Role of probiotics toward the improvement of gut health with special reference to colorectal cancer. In Diet, Microbiome and Health. 2018;1:35-50.
- Holzapfel WH, Schillinger U. Introduction to pre-and probiotics. Food Res Intern. 2002;35:109-116.
- Graf D, Di Cagno R, Fåk F, Flint HJ, Nyman M, et al. Contribution of diet to the composition of the human gut microbiota. Microb Ecol Health Dis. 2015;26:26164.
- Sánchez B, Delgado S, Blanco-Míguez A, Lourenço A, Gueimonde M, et al. Probiotics, gut microbiota, and their influence on host health and disease. Mol Nutri Food Res. 2017;61:1600240.
- 74. Tannock GW. Probiotics: a critical review. J Antimicrob Chemotherap. 1999;43:849-852.
- Orrhage K, Nord CE. *Bifidobacteria* and *Lactobacilli* in human health. Drugs Under Experiment Clin Res. 2000;26:95-111.
- 76. Zoghi A, Khosravi-Darani K, Sohrabvandi S. Surface binding of toxins and heavy metals by probiotics. Mini Rev Med Chem. 2014;14:84-98.
- Shokryazdan P, Sieo CC, Kalavathy R, Liang JB, Alitheen NB, et al. Probiotic potential of *Lactobacillus* strains with antimicrobial activity against some human pathogenic strains. BioMed Res Internation. 2014.
- Isolauri E, Rautava S, Collado MC, Salminen S. Role of probiotics in reducing the risk of gestational diabetes. Diabetes, Obesity Metabolism. 2015;17:713-719.
- Onubi OJ, Poobalan AS, Dineen B, Marais D, McNeill G. Effects of probiotics on child growth: a systematic review. J Health Popul Nutr. 2015;34:8-23.
- Liu D, Guo J, Zeng XA, Sun DW, Brennan CS, et al. The probiotic role of Lactobacillus plantarum in reducing risks associated with cardiovascular disease. Intern J Food Sci Technol. 2017(a);52:127-136.
- Shokryazdan P, Rajion MA, Meng GY, Boo LJ, Ebrahimi M, et al. Conjugated linoleic acid: a potent fatty acid linked to animal and human health. Crit Rev Food Sci Nutr. 2017(b);57:2737-2748.
- Ohara T, Yoshino K, Kitajima M. Possibility of preventing colorectal carcinogenesis with probiotics. Hepato-Gastroenterol. 2010;57:1411-1415.
- Motevaseli E, Dianatpour A, Ghafouri-Fard S. The role of probiotics in cancer treatment: emphasis on their in vivo and *in vitro* anti-metastatic effects. Intern J Mol Cell Med. 2017;6:66-76.
- Yu AQ, Li L. The potential role of probiotics in cancer prevention and treatment. Nutr Cancer. 2016;68:535-544.

- Paolillo R, Carratelli CR, Sorrentino S, Mazzola N, Rizzo A. Immunomodulatory effects of *Lactobacillus plantarum* on human colon cancer cells. Intern Immunopharmacol. 2009;9:1265-1271.
- Kosiewicz MM, Zirnheld AL, Alard P. Gut microbiota, immunity, and disease: a complex relationship. Frontiers Microbiol. 2011;2:180.
- Escamilla J, Lane MA, Maitin V. Probiotic *lactobacilli* decrease invasion of metastatic human colon cancer cells *in vitro*. FASEB J. 2010;24:928-921.
- Escamilla J, Lane MA, Maitin V. Cell-free supernatants from probiotic Lactobacillus casei and Lactobacillus rhamnosus GG decrease colon cancer cell invasion in vitro. Nutr Cancer. 2012;64:871-878.
- Ma EL, Choi YJ, Choi J, Pothoulakis C, Rhee SH, et al. The anticancer effect of probiotic *Bacillus polyfermenticus* on human colon cancer cells is mediated through ErbB2 and ErbB3 inhibition. Intern J Cancer. 2010;127:780-790.
- Abdollahi H. Probiotic-based protection of normal tissues during radiotherapy. Nutr. 2014;30:495-496.
- Ciernikova S, Mego M, Semanova M, Wachsmannova L, Adamcikova Z, et al. Probiotic survey in cancer patients treated in the outpatient department in a comprehensive cancer center. Integrat Cancer Therap. 2017;1:188-195.
- Gibson RJ, Keefe DM, Lalla RV, Bateman E, Blijlevens N, et al. Systematic review of agents for the management of gastrointestinal mucositis in cancer patients. Support Care Cancer. 2013;21:313-326.
- Du SX, Jia YR, Ren SQ, Gong XJ, Tang H, et al. The protective effects of *Bacillus licheniformis* preparation on gastrointestinal disorders and inflammation induced by radiotherapy in pediatric with central nervous system tumor. Advan Med Sci. 2018;63:134-139.
- Dai C, Zheng CQ, Meng FJ, Zhou Z, Sang LX, et al. VSL#3 probiotics exerts the anti-inflammatory activity via PI3k/Akt and NF-xB pathway in rat model of DSS-induced colitis. Mol Cell Biochem. 2013;374:1-11.
- Mego M, Ebringer L, Drgona L, Mardiak J, Trupl J, et al. Prevention of febrile neutropenia in cancer patients by probiotic strain *Enterococcus faecium* M-74 Pilot study phase I. Neoplasma. 2005;52:159-164.
- Sharma A, Rath GK, Chaudhary SP, Thakar A, Mohanti BK, et al. Lactobacillus brevis CD2 lozenges reduce radiation-and chemotherapyinduced mucositis in patients with head and neck cancer: a randomized double-blind placebo-controlled study. Euro J Cancer. 2012;48:875-881.

- Österlund P, Ruotsalainen T, Korpela R, Saxelin M, Ollus A. Lactobacillus supplementation for diarrhoea related to chemotherapy of colorectal cancer: a randomised study. Br J Cancer. 2007;97:1028-1034.
- Mego M, Chovanec J, Vochyanova-Andrezalova I, Konkolovsky P, Mikulova M, et al. Prevention of irinotecan induced diarrhea by probiotics: a randomized double blind, placebo controlled pilot study. Complement Ther Med. 2015;23:356-362.
- Gianotti L, Morelli L, Galbiati F, Rocchetti S, Coppola S, et al. A randomized double-blind trial on perioperative administration of probiotics in colorectal cancer patients. World J Gastroenterol. 2010;16:167-175.
- Ohigashi S, Hoshino Y, Ohde S, Onodera H. Functional outcome, quality of life, and efficacy of probiotics in postoperative patients with colorectal cancer. Surg Today. 2011;41:1200-1206.
- 101. Liu Z, Qin H, Yang Z, Xia Y, Liu W, Yang J, et al. Randomised clinical trial: the effects of perioperative probiotic treatment on barrier function and post-operative infectious complications in colorectal cancer surgery-a double-blind study. Aliment Pharmacol Ther. 2011;33:50-63.
- Zhang JW, Du P, Yang BR, Gao J, Fang WJ, et al. Preoperative probiotics decrease postoperative infectious complications of colorectal cancer. Am J Med Sci. 2012;343:199-205.
- 103. Liu ZH, Huang MJ, Zhang XW, Wang L, Huang NQ, et al. The effects of perioperative probiotic treatment on serum zonulin concentration and subsequent postoperative infectious complications after colorectal cancer surgery: a double-center and double-blind randomized clinical trial. Am J Clin Nutr. 2012;97:117-126.
- Lee JY, Chu SH, Jeon JY, Lee MK, Park JH, et al. Effects of 12 weeks of probiotic supplementation on quality of life in colorectal cancer survivors: a double-blind, randomized, placebo-controlled trial. Dig Liver Dis. 2014;46:1126-1132.
- 105. Kotzampassi K, Stavrou G, Damoraki G, Georgitsi M, Basdanis G, et al. A four-probiotics regimen reduces postoperative complications after colorectal surgery: a randomized, double-blind, placebo-controlled study. World J Surg. 2015;39:2776-2783.
- Yang Y, Xia Y, Chen H, Hong L, Feng J, et al. The effect of perioperative probiotics treatment for colorectal cancer: short-term outcomes of a randomized controlled trial. Oncotarget. 2016;7:8432-8440.