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Purpose: The aim of this study is to compare two different methods for auto-
contouring for prostate radiation therapy. On the one hand Atlas-Based 
segmentation, on the other a deep-learning Artificial Intelligence (AI) based 
method by means of the recently developed software module Contour 
ProtégéAI of MIM Maestro (MIM Software Inc., Cleveland, OH, USA).

Methods: Ten patients with prostate cancer treated at the Radiotherapy Unit 
of S.Stefano Hospital of Prato (IT) were selected retrospectively by specific 
inclusion criteria. To make a comparison between the auto-segmentation 
methods in prostate radiation therapy the manual contouring was used as 
a reference, called Gold Standard. Similarity indices, like as Dice Similarity 
Coefficient (DSC) and Mean Distance to Agreement (MDA), are used to 
compare AI and Atlas-based contours with Gold Standard contours.

Results: Data analysis show a significant difference in results obtained by Atlas 
based segmentation and AI. Significant differences in DSC and MDA (in terms 
of mean and SD) values between the two automatic methods of segmentation 
are present in the prostate (Mean DSC AI 0.78 ± 0.07 vs Atlas-based 0.64 ± 
0.10; Mean MDA AI 1.42 ± 0.34 vs Atlas-based 6.56 ± 2.85) and rectum (Mean 
DSC AI 0.86 ± 0.05 vs Atlas-based 0.58 ± 0.13; Mean MDA AI 1.89 ± 0.53 vs 
Atlas-based 3.75 ± 1.51). There is not a significant difference in segmentation 
of both femurs. Even for empty bladder both methods give good results.

Conclusion: In summary in the case of prostate treatment the use of software 
Contour ProtégéAI is extremely valid and the superiority in terms of accuracy of 
this method in comparison with the Atlas-based one has been shown.
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The contouring of target volumes and surrounding Organs at 
Risk (OARs) is a critical process in Radiotherapy. In general, 
contours are delineated manually [1]. However the manual 
segmentation is time-consuming and is a large contributor to 
radiotherapy treatment planning loss of time [2,3]. Another 
problem related to manual segmentation is the Inter-Oberserver 
Variability (IOV). IOV exists with manual contours due to 
differences in Radiation Oncologist training or due to the 
inherent quality of imaging studies; IOV may cause inaccuracy 
in radiotherapy treatment [4].

To standardize the contours related to target volumes and 
OARs, improve contouring efficiency and reduce the time of 
contouring many automatic segmentation methods have been 
developed [5]. 

One of the available methods for auto-contouring is Atlas-
based segmentation. This automatic algorithm uses a library 
of images, referred to as atlases, contoured by experienced 
healthcare professionals, with different organ shapes and sizes 
that represent a wide range of anatomic variations. Atlas-based 
auto-contouring uses deformable image registration between an 
atlas image and the image to be contoured (e.g. the planning 
CT) to calculate a transformation which will be used to transfer 
atlas contours onto the planning image to be contoured [6].

Recently software tools based on Deep Learning (DL) or 
Artificial Intelligence (AI) were developed to assist or even 
completely replace the current contouring methods. Recent 
studies have shown excellent results for contours obtained 
by Artificial Intelligence software, with a greater accuracy 
compared to atlas-based methods [7]. In particular DL methods 
for segmentation use Convolution Neural Networks (CNNs). 
CNNs are “trained” by analysing a very large set of contoured 
images, i.e. the training set, through a backpropagation 
algorithm that optimizes CNN parameters for identifying 
complex spatial representations related to specific objects in an 
image [8].

In this study we assess the impact of auto segmentation methods 
to contour the bladder, rectum, prostate and femural heads in 
prostate radiation therapy. Specifically the aim of this study is 
to compare manual contours, which are deemed as the “gold 
standard” contour [9], made by experts Radiation Oncologists 
and two different methods for auto-contouring, one atlas based 
and one deep learning-based.
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MATERIAL AND METHODS

Patient selection

Ten patients with prostate cancer treated at the Radiotherapy 
Unit of S. Stefano Hospital of Prato (IT) from October 2020 
and June 2021 were selected retrospectively. For each patient the 
contouring was done on a 3D planning CT with a slice thickness 
of 3 mm. All patients were prepared with an empty rectum and 
empty bladder. The empty bladder preparation protocol may 
provide better patient comfort and reproducibility during the 
radiation treatment and has non-inferior acute and intermediate 
post treatment gastrointestinal and genitourinary toxicities, 
compared with full bladder preparation [10]. Contrast medium 
was not used for any patients in this study. In this study no 
patient had hip implant, to avoid image arctifacts. There wasn’t 
age limit for patients. All patients with prostate cancer were 
treated with radical radiotherapy.

Gold-standard 

To make a comparison between the auto-segmentation methods 
in prostate radiation therapy the manual contouring was used as 
a reference [11]. To reduce IOV the reference contours, named 
Gold-Standard, were delineated by three senior Radiation 
Oncologists. Target volume and OARs in ten CT-Simulation 
selected images are contoured manually by each Radiation 
Oncologist. Starting from the contours made by all Radiation 
Oncologists, by means of the majority vote algorithm, Gold-
Standard contours were created.  

Atlas based segmentation

Atlas-based segmentation is an automatic method used to 
automatically contour target volumes and OARs on the planning 
CT using predefined atlases and a non-rigid registration 
technique [12, 13].

In this study we used a software module of MIM Maestro (MIM 
Software Inc., Cleveland, OH, USA) that offers the possibility 
to work with a customizable workflow which allows users to 
choose some options, such as the registration algorithm or some 
post-processing operations. 

A clinical workflow, named “Prostate Empty”, was created 
to contour automatically target volume and OARs. In this 
workflow the atlas “MIM Air Masked Rectum” (version 
1.0.4.G518) to contour rectum and “MIM High Risk Prostate” 
(version 1.0.1.G518) to contour prostate and femoral heads are 
added. Both atlases are proprietary and are not user editable. So 
we created a new customized atlas, added to workflow “Prostate 
Empty”, to contour the empty bladder. This atlas contains 14 
subjects and it is based on patient contours delineated by the 
expert Radiation Oncologists.

Artificial intelligence segmentation

A newer software module developed by MIM Maestro, Contour 
ProtégéAI, was used for this study. Contour ProtégéAI is based 
on a neural network framework for automated segmentation 
of structures on CT images. At the moment no detailed 
informations on the method are available. 

Contour ProtégéAI’s neural network is based on the U-Net 
architecture, which has been used for segmentation in numerous 
different applications [14]. The AI database on the MIM cloud 
contains approximately 500-1000 registered training data for 
each treatment site [2].

Quantitative evaluations of auto-segmentation

Similarity indices are used to compare AI and Atlas-based 
contours with Gold Standard contours and so quantify the 
algorithm accuracy [15].

MIM Maestro software provides a specific tool, named “Compare 
Contours”, that automatically calculates several statistical 
parameters between two contours, in this study between the 
Gold-Standard contours and automatically generated ones. In 
this study, Dice Similarity Coefficient (DSC) and Mean Distance 
to Agreement (MDA) were used to make the comparison. In 
particular, DSC index is a metric expression of contours spatial 
overlapping. DSC is calculated as follows:

2 A B
DSC

A B
∩

=
+

Where respectively A and B are the two contours evaluated. 
DSC is a dimensional and takes value between zero and one. 
When DSC value approaches unity there’s complete overlapping 
between two contours, while if DSC value approaches zero there 
is not overlap [16].                                                        

The other used statistical parameter, MDA, is a measure of 
average similarity between two different contours. MDA 
represents the average distance across all contour points for each 
couple of selected contours. The measurement unit of MDA is 
millimeter. So, a high MDA between two contours is evidence 
of region of dissimilarity in segmentation [17].

DISCUSSION

Data analysis show a significant difference in results obtained 
by Atlas based segmentation and AI. For AI segmentation 
DSC values indicates an optimal agreement (mean>0.85 
and SD<0.07) for bladder, right and left femurs and rectum.  
Figure 1 shows boxplots of the range of DSC for each structure 
contoured.  

Fig. 1. Box plot of AI and Atlas- based DSC distribution
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Significant differences in DSC (in terms of mean and SD) values 
between the two automatic methods of segmentation are present 
in the prostate (Mean DSC AI 0.78 ± 0.07 vs Atlas-based 0.64 
± 0.10) and rectum (Mean DSC AI 0.86 ± 0.05 vs Atlas-based 
0.58 ± 0.13). There is not a significant difference in segmentation 
of both femurs. Even for empty bladder both methods give good 
results (Mean DSC AI 0.91 ± 0.07 vs Atlas-based 0.81 ± 0.13): 
we must however observe that the good results with Atlas are 
due to our customized atlas i.e. a user more time-spending 
customization of atlases may be mandatory. We notice also that 
AI data show a significant lesser spread (i.e. standard deviation) 
than Atlas.

In Figure 2 the mean MDA is reported for each contoured 
structure with the two automatic methods. MDA confirms the 
results obtained with DSC criterium:

• Significant differences in MDA (in terms of mean and 
SD) for rectum (Mean MDA AI 1.42 ± 0.34 vs. Atlas-
based 6.56 ± 2.85) and prostate (Mean MDA AI 1.89 ± 
0.53 vs. Atlas-based 3.75 ± 1.51).

• Similarity in segmentation of both femurs

Fig. 2. Histogram of AI and Atlas- based MDA distribution

CONCLUSION

In this study we have compared, in respect to Gold-Standard 
contours, two different methods of auto segmentation in ten 
patients with prostate cancer treated at the Radiotherapy Unit 
of S. Stefano Hospital of Prato. On the one hand atlas-based 
segmentation, on the other AI software based on deep-learning, 
called Contour ProtégéAI, is used to generate automatically 
contours. The use of the Contour ProtégéAI software proved to 
be particularly efficient as regards the contouring of the rectum 
and prostate as well as the bladder, albeit with regard to the latter 
the results obtained by the appropriately created atlas can be 
considered valid. On the basis of the obtained data, a minor 
accuracy of Atlas-based segmentation method has been shown, 
which do not allow obtaining similar or comparable results to 
the Gold Standard method.

In summary, In the case of prostate treatment the use of software 
Contour ProtégéAI is extremely valid. To apply Contour 
ProtégéAI to clinical practice, however, it will be necessary on 
the one hand to increase the number of cases in the population 
examined, to further confirm the obtained data so far, and on 
the other hand making the population more heterogeneous to 
evaluate the contouring of OAR and target volume even in those 
patients in which there may be hip implants.
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