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The development of carcinoma chemotherapy prevention 
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AB
ST

RA
CT Animal models are commonly used to evaluate the effectiveness of potential 

chemo preventive agents, including synthetic chemicals, natural products, 
and combinations thereof. These models help identify which agents are safe 
and effective for use in clinical chemoprevention trials. Organ-specific animal 
models are used to determine which agents are most effective for preventing 
specific forms of cancer without causing toxicity. These models can be 
induced with cancer-causing agents or created using transgenic or mutant 
animals. Various animal tumour models are available for chemoprevention 
research and are used to test combinations of agents, evaluate routes of 
administration, and generate pharmacokinetics and toxicology data. There is a 
strong correlation between outcomes of animal and human chemoprevention 
trials, with positive results in animal testing generally leading to positive 
results in humans. However, further human data is needed to validate the 
efficacy of animal models in predicting the success of agents in human trials. 
Regardless, animal efficacy data remains essential for clinical trial decision-
making.
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INTRODUCTION 

Animal models are commonly used to evaluate the efficacy of 
synthetic and natural chemical agents for cancer prevention. 
Organ-specific animal models are employed to determine which 
agents could be useful in preventing specific forms of cancer, 
including colon, lung, bladder, mammary, prostate, pancreas, 
and skin cancer. These animal models provide a framework for 
evaluating agents based on defined criteria, such as a tumour 
endpoint, which is the primary endpoint in most Phase III 
clinical prevention trials. Additionally, animal data can generate 
valuable dose-response, toxicity, and pharmacokinetic data 
required prior to Phase I clinical safety testing. To be ideal for 
chemoprevention testing, an animal model should have relevance 
to human cancers, similar genetic abnormalities, genomic 
changes, relevant intermediate lesions, consistent tumour burden, 
and high predictive value for human efficacy data. Although no 
current animal model is ideal, research and development of better 
animal models is ongoing in many laboratories [1].

LITERATURE REVIEW

Mammary cancer models

The methylnitrosourea (MNU)-induced mammary gland 
carcinogenesis model is commonly used to screen potential 
mammary cancer prevention agents in rats. The model 
is characterized by high incidence and multiplicity of 
adenocarcinomas within 120-150 days of carcinogen treatment 
[2]. The resulting tumours are similar to well-differentiated 
ER+ human breast adenocarcinomas, and they are susceptible 
to hormonal manipulations that modulate human ER+ cancers. 
Another model, the Di-Methyl Benz Anthracene (DMBA) model, 
is used less frequently, and it requires activation by the cytochrome 
P450 enzyme system [3,4]. In vivo screening has shifted focus to 
identify agents useful against hormonally nonresponsive breast 
cancer, such as basal-like and Her2-amplified tumours, which 
have significantly different cells of origin, etiologic origins, and 
gene expression patterns, and different responses to therapies. 
Both EGFR inhibitors and farnesyl transferase inhibitors have 
been effective in preventing mammary cancers in these models 
[5,6].

Lung cancer models

The Mouse Lung Adenoma Model in A/J mice is frequently used 
for lung adenoma carcinogens, with 100% incidence of tumours 
developing in treated animals [7,8]. Chemo preventive agents 
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can be given in the diet, by gavage, or aerosol administration. 
Squamous cell carcinoma of the lung has two models, the MNU 
hamster tracheal model, and the NTCU-induced mouse model. 
These models are important as squamous cell lung cancer is 
being evaluated in most phase 2 clinical chemoprevention trials 
[9,10]. Another lung cancer chemoprevention model uses the 
tobacco-specific carcinogen NNK to induce lung tumours in rats. 
The tumour incidence is determined by dividing the number of 
animals with cancers by the total number of animals at risk [11].

Colon/Intestinal cancer models

The NCI's Chemopreventive Agent Development Research 
Group (CADRG) has conducted numerous preclinical studies 
on colon carcinogenesis in rats induced with the carcinogen Az-
Oxy-Methane (AOM) [12]. These studies have used adenomas 
and adenocarcinomas or early pervasive lesions as primary efficacy 
endpoints and have focused on colon carcinogenesis [13]. The 
ACF assay is used as an initial screen, and a wide variety of agents 
have proven effective in preventing AOM-induced cancers. COX-
2 inhibitors and NSAIDs, including NO-NSAIDs, have been the 
most consistently effective agents in this model [14]. Low-dose 
aspirin was also highly active in preventing colon tumours, and 
high-dose aspirin was effective in humans. Although initial studies 
employed early initiation of treatment, initiating treatment 
after ACF formation still exhibits high efficacy in reducing the 
development of invasive cancers. The MSH2 mismatch repair-
deficient mouse is presently being employed to evaluate a series 
of NO-releasing NSAIDs and their parental counterparts. The 
CADRG has developed three genetically engineered models of 
intestinal cancer that mimic germline mutations predisposing 
subjects to colorectal cancer for prevention screening. Positive 
results in Min/+ mice contributed to the scientific rationale for 
evaluating celecoxib in FAP patients [15-18].

Bladder cancer models

The OH-BBN-induced rat and mouse model is the primary 
method used to assess the prevention of bladder cancer [19, 
20]. The resulting tumours have invasive characteristics and 
are histologically similar to human bladder transitional cell 
carcinoma. Gene expression changes similar to those in human 
bladder tumours have been found in this model, including 
alterations in the expression of FHIT, survivin, Ki67, annexin 
II, cyclins and cyclin kinases, and various S100 calcium binding 
proteins [21]. NSAIDs, EGFR inhibitors, and tea polyphenols 
have shown significant efficacy in this model. Agents initiated 
after pervasive or even microscopically invasive lesions already 
exist have high efficacy, indicating that they affect later stages of 
carcinogenesis [22]. Two newer p53-driven models, including 
the Ha-ras-activated p53+/− and the uroplakin II-SV40 large T 
transgenic mice, are currently being evaluated for the efficacy of 
p53-rescue compounds.

Prostate cancer models

The development of prostate cancer models has been challenging 
compared to breast, colon, skin, and lung cancer models [23]. 
The driving mutations in prostate cancer are not clearly defined, 
and most human prostate cancers do not progress to a lethal 
stage. The Boland model uses MNU/testosterone-treated rats to 
develop primarily microscopic cancers in the dorsolateral prostate 

[24]. While this model is useful for detecting chemopreventive 
agents, it has a long latency period, requires substantial amounts 
of test agents, and is expensive. Two mouse prostate models, the 
TRAMP model and C3(1)/T-antigen model, have been explored 
for identifying prostate chemopreventive agents, but they grow 
tumours rapidly, unlike most human prostate tumours [25,26]. 
Nevertheless, they have been useful in evaluating agents that 
show cancer preventive activity in human prostate, such as tea 
polyphenols and toremifene. PTEN tumour suppressor gene loss 
is observed early in human prostate cancer, and mouse models 
with PTEN alterations are being evaluated. A knockout of PTEN, 
combined with an androgen-responsive promoter translocation 
of the transcriptional activator ETS-related gene, ERG, may be a 
promising prostate model to pursue [27].

Skin cancer models

The DMBA-TPA mouse skin cancer model is a well-established 
method for testing compounds that prevent skin carcinogenesis 
[28, 29]. UV-induced mouse skin cancer model, using SkH-1 
hairless mice, is also used to test chemopreventive agents. Both 
models are relevant to the etiology of human skin disease, and 
several compounds have been found effective in preventing skin 
tumours, including NSAIDs, DFMO, and green tea polyphenols. 
A clinical trial in humans has shown promising results [30,31]. 
In another skin cancer model, PTCH gene knockout mice have 
been shown to respond to various specialists, including retinoid 
receptor agonists and COX-2 inhibitors, which are currently in 
clinical trials [32].

Ovary cancer models

There is currently no established model for studying ovarian 
cancer prevention. One potential model involves surgically 
inserting a DMBA-soaked thread into a rat's ovary. This is done 
using Wistar-Furth rats at 7-8 weeks of age [33]. Approximately 
200 ugs of DMBA can be absorbed per thread when sterile silk 
thread is submerged in melted DMBA. In this model, around 
half of the cancers are epithelial and the other half is granulose-
theca cancers. Ovarian tumours occur in almost 80% of DMBA-
exposed mice about 300 days after exposure to the carcinogen. 
Piroxicam is partially effective in this model, but bexarotene and 
celecoxib are not [34]. A recently reported BRCA1 model will 
also be investigated since BRCA1 mutation carriers are at high 
risk for ovarian cancer. The domestic hen is the only species, 
besides humans, that develop ovarian cancer on its own. This is 
a promising new expansion to ovarian disease models. Inhibitors 
of ovarian cancer, such as progestin’s, have been successful in this 
model. Additionally, specific p53 rescue compounds' inhibitory 
effects are currently being investigated [35].

Esophagus cancer models

Repeated exposure to N-Nitroso-N-Methyl Benzylamine 
(NMBA) can lead to esophageal cancer in rats, specifically 
squamous cell cancer [36]. This model is also being used to identify 
early changes in the cancer process using computerized spectral 
analysis [38]. Another model that mimics acid reflux disease 
and leads to esophageal adenocarcinomas has been developed. 
COX-2 inhibitors, lipoxygenase inhibitors, and NSAIDs are 
effective in targeting esophagus models, and are currently being 
tested in this model [37]. NSAIDs have also been found to 
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treating the pancreas with BOP and chemopreventive agents 
and examining it for histological lesions such as hyperplasia’s, 
dysplasia’s, and tumours. Recent studies have shown that NO-
delivering anti-inflammatory medicine has demonstrated 
preventive activity in this model. A new transgenic mouse model 
has also been developed, where mice carrying the LSL-KRAS 
transgene develop ductal pancreatic cancer by five months of age. 
Atorvastatin and NO-releasing aspirin have shown significant 
chemopreventive properties in this model [44-46].

CONCLUSIONS

Potential chemopreventive agents have been extensively tested 
using animal models. Breast cancer, colon cancer, and skin cancer 
models are among the many animal models that have demonstrated 
a significant correlation with human efficacy. However, there 
have also been negative correlations between clinical studies and 
animal studies, highlighting the significance of animal models' 
ongoing development and improvement. Animal studies have 
also demonstrated that starting treatment long after cancer has 
started can still have a preventative effect and that using different 
combinations of agents or different routes of administration can 
keep efficacy while lowering toxicities. Additional human data on 
positive and negative outcomes with chemopreventive agents will 
be needed to validate animal models for predicting the efficacy of 
agents in human clinical trials.

significantly reduce the progression of premalignant esophageal 
tissue to adenocarcinoma in individuals at high risk of developing 
esophageal cancer. The NSAID sulfidic has also been found to be 
effective in a transgenic oesophageal cancer model [39,40].

Head and neck cancer models

Epithelial tumours of the head and neck are common in humans 
and are often linked to exposure to tobacco smoke. Researchers 
have used a model involving rats and 4-NQO induction of cancer 
in their tongue to study chemoprevention of head and neck 
cancer. [41] Rats are exposed to 4-NQO in their drinking water 
and given chemo preventive medication in their diet. Celecoxib 
and piroxicam have been shown to prevent these cancers, while 
zileuton has not. EGFR inhibitors have a strong inhibitory 
effect, and rosiglitazone and Suberoyl Anilide Hydroxamic Acid 
(SAHA) have moderate efficacy. Pioglitazone and Tarceva have 
made it to human trials. The rats' oral tissues are examined for 
histological evidence of hyperplasia, dysplasia, and cancer [42,43].

Pancreatic cancer model

Pancreatic cancer, like human colon cancer, is caused by a mutation 
in the KRAS gene. The N-nitrosobis (2-oxopropyl) amine (BOP) 
hamster model has been used for many years to test potential 
cancer-preventing agents in the pancreas. This model involves 
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