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Aim: This study aimed to evaluate the Deformable Image Registration (DIR) 
software of Mirada® and Velocity® using quantitative measures as per the 
recommendation based on Task Group TG-132.

Materials and Methods: Task Group 132 has provided geometric and anatomic 
virtual phantoms for quality assurance, which were imported and contoured on 
the reference image, followed by DIR and then the contours were propagated 
on all the CT/CBCT data sets with different offsets and orientations of 
geometric and anatomic virtual phantom using Mirada and Velocity. Analysis 
was performed using the Dice Similarity Coefficient (DSC), Mean Distance to 
Agreement (MDA), Housdorff (HD) and Target Registration Error (TRE). The 
results were compared to find the difference in significance using a paired 
t-test with a significance level of 5%. 

Results: The obtained statistical result is listed below, considering the 
geometric phantom. With regards to DSC, Mean and SD values obtained for 
Mirada and Velocity are 0.955 ± 0.348 and 0.965 ± 0.418, respectively with 
the p-value coming at 0.013 indicating a significant difference. Considering 
MDA, a significant difference of a p-value of 0.001 was found between Mirada 
and Velocity with the former having 0.668 ± 0.684 compared to 0.381 ± 0.424 
for the latter. For HD, Mirada obtained a mean value of 3.464 ± 2.091 in 
comparison with 2.202 ± 1.215 for Velocity. As for TRE, three fiducials within 
the phantom were considered, and Mirada had a mean value of 1.037 mm 
while Velocity had 1.338 mm. While analysing the anatomic phantom, The 
DSC values for Mirada and Velocity were 0.946 ± 0.031 and 0.944 ± 0.313 
respectively, indicating no significance. Similarly, no significance was found 
considering MDA (Mirada: 0.435 ± 0.235, Velocity: 0.449 ± 0.242). Regarding 
HD, Mirada obtained 4.216 mm, while Velocity had 4.233 mm, showing 
exceptional compliance. The mean value of TRE for three fiducials was found 
to be less than 1 mm there has been a significant difference. 

Conclusion: This study highlights the strengths and differences between Mirada 
and Velocity in DIR for adaptive radiotherapy. While both software applications 
excel in DSC, MDA and HD, the observed difference in TRE indicates a 
potential advantage of Mirada in achieving better image registration, especially 
in landmark-based registration scenarios.

Keywords: adaptive radiotherapy, deformable image registration, mirada, 
velocity, Dice Similarity Coefficient (DSC)

Received: 03 May, 2024, Manuscript No. OAR-24-134237

Editor Assigned: 15 May, 2024, Pre-QC No. OAR-24-134237(PQ)

Reviewed: 20 May, 2024, QC No. OAR-24-134237(Q)

Revised: 25 May, 2024, Manuscript No. OAR-24-134237(R)

Published: 21 June, 2024, Invoice No. J-134237

Word count: 3771 Tables: 02 Figures: 07 References: 27

Address for correspondence: 

Ragul T,

Medical Physicist/Scientist-I, Department of Medical Physics, Kalyan Singh 
Super Specialty Cancer Institute, Lucknow, India.

E-mail: ragul.at93@gmail.com@gmail.com

INTRODUCTION

Deformable Image Registration (DIR) is a technique employed 
to monitor changes in a patient's anatomy throughout the course 
of radiotherapy. DIR entails aligning and registering images from 
multiple time points to construct a comprehensive representation 
of the patient's anatomy over time. Essentially, DIR calculates 
a deformation field that maps the pixels of one image to their 
corresponding pixels in another image. This deformation field 
is typically depicted as a 3D grid of vectors that describe the 
displacement of each pixel in one image to its corresponding pixel 
in the other image. The deformation field can then be utilised to 
transform one image to match the geometry of the other [1, 2]. 
Through the utilisation of DIR, medical professionals can more 
accurately identify and track changes in the patient's anatomy, 
encompassing alterations in size, shape, or location of the target 
tissue, as well as the growth of new tumours. This information 
can subsequently be leveraged to make more precise adjustments 
to the patient's treatment plan.

DIR boasts a plethora of applications in the realm of medical 
imaging, including adaptive radiotherapy, monitoring disease 
progression, image-guided surgery, and image segmentation [3-
7]. Among its diverse applications, one of the most prominent 
is adaptive radiotherapy. Adaptive radiotherapy is a technique 
harnessed in radiation therapy to adjust the radiation dose and 
delivery during the treatment course, contingent on alterations in 
the patient's anatomy or tumour response. The primary objective 
of this technique is to enhance the effectiveness of radiation 
therapy while minimising the potential risk of side effects. 
Deformable Image Registration, which is a key component of 
adaptive radiotherapy, is highly effective in improving treatment 
outcomes for various types of cancer, such as lung, head and neck, 
and prostate cancers. Consequently, DIR plays a pivotal role in 
modern radiotherapy, as it facilitates the seamless integration 
of adaptive radiotherapy into clinical workflows. The American 
Association of Physicists in Medicine (AAPM). Task Group 
132 has issued recommendations for the quantitative and 
qualitative assessment of DIR, with a focus on surface distance 
metrics and landmark analysis, along with associated supporting 
documentation. Numerous studies have already been published 
on the evaluation of the Deformation Vector Field-based (DVF) 
techniques [2]. Many prior studies in the field have primarily 
focused on individual metrics or were limited to the evaluation 
of a single software algorithm within virtual phantoms [8-14]. 
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Fig. 1. Geometric Phantom 1. Anterior semicircle 2. Left outer square 3. Left inner square 4. Posterior circle 5. Central circle 6. Right Inner circle 7. Right 
outer circle 8. Anterior circle

Fig. 2. Anatomic Phantom 1. Bladder 2. Left Seminal Vesicles 3. Left Femoral Head 4. Pelvic Bone 5. Rectum 6. Right Femoral Head .7 Right Seminal 
Vesicles 8. Prostate

In our study, we have conducted a comparative analysis of two 
commercially available DIR algorithms, Mirada (Mirada Medical, 
Oxford, UK) and Velocity (Varian Medical Systems, Palo Alto, 
CA), with a particular emphasis on quantitative assessments like 
DSC, MDA, HD and TRE.

MATERIALS AND METHODS
Mirada and Velocity are widely used Deformable Image 
Registration (DIR) software tools. These applications facilitate the 
registration and fusion of images acquired from diverse modalities 
and at different time points while accounting for anatomical 
changes and deformations. Notably, Mirada employs a free-form 
deformation algorithm, whereas Velocity uses multi-resolution 
B-Spline algorithm [15, 16].

For quality assurance purposes, Task Group 132 has provided 
geometric and anatomic virtual phantoms [1], which were 
imported into both Velocity and Mirada. In this study, six datasets 
from the geometric phantoms were employed, comprising five CT 
and one CBCT dataset. The reference dataset, denoted as Basic 
Phantom Dataset-1 CT-Head First Supine (HFS), contains a 
cone pointing inferiorly, a semi-circle on the left side, and internal 
markers. Additionally, Basic Phantom Dataset-1 CBCT-HFS, 
Basic Phantom Dataset-2 (with offsets: To the left=1.0 cm, to 
anterior=0.5 cm, to superior=1.5 cm), Basic Phantom Dataset-3 
(with offsets: To left=0.5 cm, To anterior=1.5 cm, to superior=2.0 
cm, and rotations of 5 degrees along the X-axis, 8 degrees along 

the Y-axis, and 10 degrees along the Z-axis). Basic Phantom 
Dataset-4 is the same as the reference dataset, except it's in Feet 
First Supine (FFS), while Basic Phantom Dataset-5 maintains the 
reference configuration except it’s in a Head First Prone (HFP) 
position. Basic Phantom Dataset-6 retains the reference setup but 
is in a Feet First Prone (FFP) orientation [1].

In this study, three datasets from anatomic phantoms were also 
utilised, consisting of two CT and one CBCT datasets [1]. The 
reference dataset, termed Basic Anatomical Dataset-1 CT-HFS, 
contains a pelvis phantom with three markers in the regions 
of the bladder, prostate, rectum, and three skin markers. The 
Basic Anatomical Dataset-1 CBCT-HFS is used in parallel. 
Furthermore, the Basic Anatomical Dataset-2 replicates the 
reference CT dataset but introduces offsets (To the left = 0.3 cm, 
to anterior = 0.5 cm, to superior = 1.2 cm) For further information 
about virtual phantoms, please refer to the supplementary 
documents [17-25]. Experts manually delineated contours in all 
the phantom sets, including the reference CT dataset, for a total 
of 8 structures in both the geometric and anatomic phantoms. 
The study's workflow encompassed rigid registration, followed 
by DIR, and subsequently, the propagation of contours across all 
CT/CBCT datasets, with variations in offsets and orientations 
of geometric and anatomic virtual phantoms, using both Mirada 
and Velocity. Pre-implemented fiducials from the phantoms were 
employed for the evaluation of Target Registration Error (TRE) 
(Figures 1 and 2).
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Fig. 3. Dice Similarity Coefficient (DSC)

Fig. 4. Mean Distance to Agreement (MDA) and Hausdorff Distance (HD)

Fig. 5. Target Registration Error (TRE)

DIR evaluation method

To conduct Quality Assurance (QA) for DIR, the delineated con-
tours from the reference CT were propagated onto all the CT/
CBCT datasets with various offsets and orientations. The accu-
racy of the registration can be assessed through the comparison 
of the propagated and manually delineated contours. In an ideal 
scenario with perfect registration and delineation, the propagat-
ed and manually delineated contours should perfectly overlap. 

This evaluation is assessed using Surface Distance metrics such as 
(DSC), (MDA), and (HD).

Dice Similarity Coefficient (DSC)

DSC is a measure of the overlap between corresponding structures 
in the reference and registered images. Tolerance (0.8- 0.9) (Figure 
3).

Mean Distance to Agreement (MDA) and Haus-
dorff Distance (HD)

MSD is the average distance between the corresponding surfaces 
in the reference and registered images. It is calculated by first iden-
tifying the surface of interest in both images, and then computing 

Target Registration Error (TRE)

The distance between the centroid of a fiducial or target in the 

The Evaluation Process typically involves the following steps:

• Importing Propagated Structures: The first step is to im-
port the structures generated by the two DIR algorithms 
with delineated structures.

• Quantitative Assessment: Once the structures are im-
ported, the TG 132 QA evaluation module in Velocity
calculates the DSC, MDA, and HD values. These met-
rics provide a comprehensive assessment of how well the
Algorithms generated structures align with reference 
data or ground truth.

the distance between each point on the surface in the reference 
image and the closest point on the surface in the registered image. 
The distances are then averaged across all surface points. MDA <2 
mm to 3 mm as per TG-132 (Figure 4). The maximum distance 
between all surface points is then taken as the HD.

reference image and the centroid of the corresponding fiducial or 
target in the registered image TRE <2 mm–3 mm (Figure 5).

•	 For landmark-based evaluation like TRE is directly mea-
sured from the distance between the two fiducials after 
registration. 

Inter algorithm variability

To determine inter‐algorithm variability, the results were statisti-
cally grouped by the structures. The results were compared to find 
the difference in significance using paired t-test with a significance 
level set at 5%.
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RESULTS

In our analysis of the geometric phantom, we focused on 8 distinct 
structures for examination. To ensure statistical rigour, a total of 
48 samples were considered for the paired t-test. The resulting 
DSC means and Standard Deviation (SD) values for Mirada and 
Velocity were 0.951 ± 0.041 and 0.962 ± 0.035, respectively. Sig-
nificantly, the p-value was calculated to be 0.014, indicating a sig-
nificant difference between these two software’s. Moreover, when 
we considered the Mean Distance Agreement (MDA), a signifi-
cant difference of p-value of 0.002 was observed between Mirada 
and Velocity. Mirada exhibited a mean MDA of 0.709 ± 0.705, 
whereas velocity displayed a lower value of 0.411 ± 0.435. For 
the HD, the data showed that Mirada achieved a mean value of 
3.385 ± 2.150, which was notably higher than the 2.190 ± 1.242 
achieved by velocity.
In our analysis of TRE, we considered three fiducials within the 
phantom. Both Mirada and Velocity exhibited a mean and SD of 
1.026 ± 1.384. However, Velocity showed a slightly higher mean 
and SD at 1.344 ± 2.423. The calculated p-value 0.031 shows no 

statistically significant.
In the analysis of the anatomic phantom, we focused on eight dis-
tinct structures. This comprehensive examination involved a total 
of 16 samples for the t-test. For the DSC, the mean and SD val-
ues for both Mirada and Velocity were 0.946 ± 0.031 and 0.944 
± 0.313, respectively. The calculated p-value of 0.312 suggests no 
statistically significant difference. Likewise, for the Mean Distance 
to Agreement (MDA), the results showed no significant distinc-
tion between Mirada 0.435 ± 0.235 and Velocity 0.449 ± 0.242. 
The p-value for this comparison supports the absence of a signifi-
cant difference. When considering the Hausdorff Distance (HD), 
Mirada yielded 4.233 ± 2.109, while Velocity produced 4.233 ± 
2.109. The p-value of 0.751 indicates no significant difference be-
tween the two.
However, for the Target Registration Error (TRE), focusing on 
three fiducials, we observed a significant difference. The mean and 
SD values were 0.588 ± 0.224 for Mirada and 1.667 ± 0.871 for 
Velocity. The calculated p-value of 0.04 signifies a statistically sig-
nificant difference in TRE between the two software programme 
(Table 1 and 2).

Tab. 1. Geometric phantom evaluation 
results 

Tab. 2. Anatomic phantom evaluation 
results

Test Name
Mean ± SD

p-Value
Mirada Velocity

Dice Similarity Coefficient (DSC) 0.951 ± 0.041 0.962 ± 0.035 0.014

Mean Distance to Agreement 
(MDA) in mm 0.709 ± 0.705 0.411 ± 0.435 0.002

Hausdorff Distance (HD) in mm 3.385 ± 2.150 2.190 ± 1.242 0.0001

Target Registration Error (TRE) 1.026 ± 1.384 1.344 ± 2.423 0.031

Test Name
Mean ± SD

p-Value
Mirada Velocity

Dice Similarity Coefficient (DSC) 0.946 ± 0.031 0.944 ± 0.0313 0.312
Mean Distance to Agreement 

(MDA) in mm 0.435 ± 0.235 0.449 ± 0.242 0.257

Hausdorff Distance (HD) in mm 4.216 ± 2.084 4.233 ± 2.109 0.751

Target Registration Error (TRE) 0.588 ± 0.224 1.667 ± 0.8710 0.04

Tolerance: DSC: 0.8-0.9, MDA>2 mm, TRE: 2 mm-3 mm [1]

DISCUSSION

The present study undertook a comprehensive analysis of the per-
formance of two Deformable Image Registration (DIR) software, 
Mirada and Velocity, in the context of image registration. Our 
investigation considered a range of quantitative metrics to assess 
the accuracy and reliability of these software applications. The re-
sults for the geometric phantom show that the mean Dice Similar-
ity Coefficient (DSC) for Mirada is 0.951, and for velocity, it is 
0.962. The values, which are closer to 1, indicate a high degree of 
overlap between the structures. so, velocity was performed slightly 
better in that the DSC test, there was the only exception, where 
velocity showed an out-of-tolerance for the Left Lateral Outer 
square structure 16 in the Basic Phantom Dataset-2, with a value 

of 0.794, while Mirada showed 0.801 for the same structure (Fig-
ures 6 and 7).
By considering MDA the mean of all the structures within the 
tolerance (>2 mm) with the Mirada algorithm gives a mean value 
of 0.709 mm and velocity gives 0.411 it shows the velocity mean 
value was close to zero and performed better, at the case of Haus-
droff Distance (HD) even though there was no tolerance given in 
the TG 132 in this study for Mirada, mean, HD value was around 
3.385 mm and for velocity, it was 2.190 mm, where the maximum 
value is reached up to 9.481 mm in Mirada and velocity it reaches 
only up to 3.73 mm so the results clearly show that velocity per-
forms better than the Mirada in surface distance metrics (Figure 
7).
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Fig. 6. Variation of Dice Similarity Coefficient (DSC), Mean Distance to Agreement (MDA), Housdroff Distance (HD), Target Registration Error (TRE) be-
tween Mirada and Velocity in Geometric Phantom

Fig. 7. Variation of Dice Similarity Coefficient (DSC), Mean Distance to Agreement (MDA), Housdroff Distance (HD), Target Registration Error (TRE) be-
tween Mirada and Velocity in Anatomic Phantom

In the analysis of the anatomic phantom, we examined eight dis-
tinct structures total of 16 samples, providing an evaluation of the 
software's ability to handle different anatomical regions. Notably, 
the DSC values for Mirada and Velocity are 0.946 ± 0.031 and 
0.944 ± 0.0313, respectively. These values, both close to 1, indicate 
a high degree of overlap between the structures in the evaluated 
images. Although the p-value of 0.312 suggests no significant dif-
ference between the two algorithms. This suggests that both soft-
ware is capable of achieving a similar level of accuracy in contour 
propagation. The standard deviation values are 0.03 and 0.313 
were very close, further supporting the consistency of their per-
formance.
Similarly, when examining the Mean Distance to Agreement 

(MDA), our findings indicate that there is no significant difference 
between Mirada and Velocity. Both software applications exhib-
ited comparable results, emphasising their reliability in capturing 
the spatial agreement between structures in the CT and CBCT 
datasets. The close mean values and standard deviations further 
substantiate the equivalence of their performance. The analysis of 
HD further confirmed the consistent performance of Mirada and 
velocity whose mean is 1.026 and 1.344 in the maximum goes up 
to 0.92 mm from Mirada and velocity is 2.2 mm. The HD values 
for both software applications were very close, with a calculated 
p-value that indicates no significant difference. This indicates that 
velocity exhibited a higher TRE compared to Mirada. While both 
software applications are capable of acceptable image registration,
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this discrepancy in TRE suggests that Mirada may offer a better 
alignment of images in the case of landmark-based registration. 
The significance of this difference is particularly relevant in clini-
cal scenarios where landmark or marker-based registration is criti-
cal. When evaluating the performance of the two algorithms, it 
is evident that there is a minimal gap in their effectiveness. The 
B-spline method, which utilises a grid of control points for im-
age transformation and interpolates movements using cubic B-
spline functions, generally ensuring a smoother deformation. On
the contrary, the Demons approach, rooted in the optical flow
method, may produce irregular deformations if not meticulously
regularized. Despite historical advantages in processing time for
Demons, recent advancements have significantly enhanced the
speed of B-spline algorithms, making them competitive. There's
been limited research on how well DIR algorithms in TPS systems 
handle CT–CT contour propagation. Hardcastle et al. found that 
fast symmetric Demons and Salient-Feature-Based Registration
(SFBR) algorithms in Pinnacle TPS performed similarly to our
study, with Dice coefficients are around 0.8 for various structures.
Peroni et al. compared MIM with an open-source B-Spline algo-
rithm and saw no significant differences. Hoffmann et al. reported 
less than 4 mm target registration error in 79% of cases with Ve-
locity AI's B-spline-based algorithm. La Macchia et al. found no
significant differences among ABAS, MIM, and Velocity AI. In
our study, B-spline and Demons-based algorithms within popular 
treatment planning systems were compared. Although there were
no significant differences between algorithms [26-27].
In summary, our study provides valuable insights into the perfor-

mance of Mirada and Velocity in deformable image registration 
for radiotherapy planning. While both software applications excel 
in contour propagation, spatial agreement, and HD, the observed 
discrepancy in TRE suggests that Mirada may have an advantage 
in achieving superior image registration, particularly in landmark-
based registration scenarios. This specific observation adds a novel 
dimension to the comparative analysis. This study adds to the 
body of knowledge on the topic of adaptive radiotherapy by shed-
ding light on the performance of these software tools in a context 
where precision and accuracy are of utmost importance.

CONCLUSION

This study highlights the strengths and differences between Mi-
rada and Velocity in DIR for Adaptive Radiotherapy. While both 
software applications excel in DSC, MDA and HD, the observed 
difference in TRE indicates a potential advantage of Mirada in 
achieving better image registration, especially in landmark-based 
registration scenarios. Clinicians and medical physicists should 
carefully consider these findings when implementing DIR in clini-
cal radiotherapy.
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