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INTRODUCTION

Pediatric Low-Grade Gliomas (pLGG) comprise a heterogeneous 
variety of tumors classified by the World Health Organization as 
grades I or II [1,2]. They are the most common brain tumors in 
children, accounting for approximately 40% of tumors of the Cen-
tral Nervous System (CNS) in childhood [3]. If total resection is not 
possible, pLGG become a chronic disease with protracted reduc-
tion in quality of life [1,4] with a 10-year Progression-Free Survival 
(PFS) of less than 50% [5,6]. Molecular characterization of spo-
radic pLGG has identified frequent alterations in the RAS-MAPK 
pathway, most commonly fusions or mutations in the BRAF gene 
[7,8]. Lassaletta et al. recently showed that patient prognosis differs 
based on the underlying molecular alteration: pLGG with BRAF 
fusion have a favorable outcome, while those with BRAF V600E 
mutation are at increased risk of progression and transformation 
[9,10]. This has led to clinical trials using RAS-MAPK pathway tar-
geted agents such as MEK inhibitors and BRAF V600E inhibitors 
for patients with molecular evidence of BRAF alterations. These 
new therapies are promising and many pLGG that were refractory 
to traditional chemotherapy have had significant responses [11,12].

In the past decade, radiomics has emerged as an imaging-based 
method to link quantitative features extracted from medical images 
to outcomes, such as cancer genotype or survival [13,14]. Radiomic 
signatures have been extensively investigated for different cancer 
sites including liver cancer [15], bone tumors [16], glioblastoma 
[17], medulloblastoma, and midline high-grade glioma [18,19]. 
Recently, we applied Random Forest (RF) to differentiate BRAF 
fused from BRAF V600E mutated pLGG and yielded an Area Un-
der the receiver operating characteristic Curve (AUC) of 0.85 on 
an independent validation set [20]. It has not been well established 
to what extent different classification models and the size of the 
training data affects diagnostic performance. This may also serve as 
a model for classification algorithms in other tumors.

We therefore aimed to assess the performance of five commonly 
used Machine Learning (ML) models to predict BRAF fusion or 
BRAF V600E mutation on an independent validation set with sys-
tematic step-wise increase of training data.

MATERIALS AND METHODS
Patients

This retrospective study was approved by the institutional review 
board or research ethics board of the two participating academic in-
stitutions: The Hospital for Sick Children (Toronto, Ontario, Can-
ada) and The Lucile Packard Children’s Hospital (Stanford Univer-
sity, Palo Alto, California). This study was performed in accordance 
with the relevant guidelines and regulations. Informed consent was 
waived by the local institutional review or research ethics boards 
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Y Objectives: BRAF status has important implications for prognosis and therapy of 
Pediatric Low-Grade Gliomas (pLGG). Machine Learning (ML) approaches can pre-
dict BRAF status of pLGG on pre-therapeutic brain MRI, but the impact of training 
data sample size and type of ML model is not established. 

Methods: In this bi-institutional retrospective study, 251 pLGG FLAIR MRI datasets 
from 2 children’s hospitals were included. Radiomics features were extracted from 
tumor segmentations and five models (Random Forest, XGBoost, Neural Network 
(NN) 1 (100:20:2), NN2 (50:10:2), NN3 (50:20:10:2)) were tested to classify them. 
Classifiers were cross-validated on data from institution 1 and validated on data 
from institution 2. Starting with 10% of the training data, models were cross-val-
idated using a 4-fold approach at every step with an additional 2.25% increase in 
sample size.

Results: Two-hundred-twenty patients (mean age 8.53 ± 4.94 years, 114 males, 
67% BRAF fusion) were included in the training dataset and 31 patients (mean 
age 7.97 ± 6.20 years, 18 males, 77% BRAF fusion) in the independent dataset. 
NN1 (100:20:2) yielded the highest area under the receiver operating characteris-
tic curve (AUC). It predicted BRAF status with a mean AUC of 0.85, 95% CI (0.83, 
0.87) using 60% of the training data and with mean AUC of 0.83, 95% CI (0.82, 
0.84) on the independent validation data set.

Conclusion: Neural nets have the highest AUC to predict BRAF status compared to 
Random Forest and XG Boost. The highest AUC for training and independent data 
was reached at 60% of the training population (132 patients).
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due to the retrospective nature of the study. An inter-institution-
al data transfer agreement was obtained for data-sharing. Patients 
were identified from the electronic health record data bases at To-
ronto from January 2000 to December 2018 and at Stanford from 
January 2009 to January 2016. Patient inclusion criteria were: 1) 
age 0–18 years, 2) availability of molecular information on BRAF 
status in histopathologically confirmed pLGG, and 3) availability 
of preoperative brain MRI with a non-motion degraded FLAIR 
sequence. Patients with histone H3 K27M mutation and neurofi-
bromatosis 1 were excluded. Spinal cord tumors were also excluded.

The datasets of 94 patients from The Hospital for Sick Children, 
Toronto, and 21 patients from The Lucile Packard Children’s Hos-
pital, Stanford, used in this study have been previously published 
[20]. The previous study applied an RF model without variations 
in sample size to differentiate BRAF fused from BRAF V600E mu-
tated pLGG. Our current study investigates the performance of five 
commonly used ML models and various sample sizes to predict 
BRAF fusion or BRAF V600E mutation on an independent valida-
tion set using a systematic step-wise increase of training data.

Molecular analysis

BRAF fusion status was determined using a nanoString panel or 
Fluorescence In Situ Hybridisation (FISH) while BRAF p.V600E 
mutation was determined using immunohistochemistry or droplet 
digital PCR as previously described [21]. 

MRI acquisition, data retrieval, image segmentation: All patients 
from The Hospital for Sick Children, Toronto, underwent brain 
MRI at 1.5 T or 3 T across various vendors (Signa, GE Healthcare; 
Achieva, Philips Healthcare; Magnetom Skyra, Siemens Health-
ineers). Sequences und segmentations details are provided in the 
Supplemental Methods. 

Radiomic feature-extraction methodology 

A total of 851 MRI-based radiomic features were extracted from 
the ROIs on FLAIR images. Radiomic features included histogram, 
shape, and texture features with and without wavelet-based filters. 
Features of Laplacian of Gaussian filters were not extracted. All fea-
tures are summarized in Supplemental Table. Bias field corrections 
prior to z-score normalization were used to standardize the range 
of all image features [22,23]. Once the features were extracted, we 
applied z-score normalization again followed by L2 normalization 
to the features of cohort 1 and used the distribution of the features 
in cohort 1 (training data) to normalize cohort 2 (validation data). 
Details of pre-processing and radiomic feature extraction in 3D 
Slicer have been described elsewhere [13,17,24]. 

Statistical and ML analysis

We used t-distributed Stochastic Neighbor Embedding (t-SNE) 
to visualize our dataset. RF, XGBoost, NN1 (100:20:2), NN2 
(50:10:2), NN3 (50:20:10:2) were utilized as classification models 
[25-27]. Descriptions of t-SNE, RF, XGBoost, and NN and can be 
found in detail in the Supplemental Methods. 

Internal cross validation

Starting with 10% of the training data, all models were cross-val-
idated using a 4-fold approach with a systematic step wise 2.25% 
increase in sample size. At each step, experiments were repeated 10 
times using randomized versions of the respective percentage of the 
training data, resulting in 10 classifiers per step.

External validation 

At each step, the 10 classifiers were validated on the entire indepen-
dent external data set. Classification performance metrics: Mean 
AUC and 95% Confidence Intervals (CI) were calculated for ev-
ery step for both training and validation data sets, and the process 
was repeated for all five models. The external validation data set 
was never used in any stage of the training of the models and was 
dedicated to external validation. To examine whether the difference 
between performance of the models were significant, we conducted 
a two-sided two-sample Kolmogorov-Smirnov (KS) test on mean 
AUCs across training sample sizes for each pair of our models (Fig-
ure 1). 

RESULTS
Patients

A total of 251 children (132 males (53%), mean age 8.5 years, 
Standard Deviation (SD) 5.1 years) were included. The internal 
cohort consisted of 220 patients (114 males (52%), mean age 8.5 
years, SD 4.9 years) from The Hospital for Sick Children. The ex-
ternal cohort consisted of 31 patients (18 males (58%), mean age 
8.0 years, SD 6.2 years) from The Lucile Packard Children’s Hospi-
tal, were analyzed. BRAF fusion was found in 172 of 251 patients 
(69%), in 148 of 220 patients from the Toronto cohort (67%), 
and in 24 of 31 patients from the Stanford cohort (77%). Patient 
demographic information and pathologic information including 
age at diagnosis, sex, histologic diagnosis, and molecular diagnosis 
regarding BRAF status are provided in Table 1.

Tab. 1. Patient demographics. (Note: JPA=Juvenile 
Pilocytic Astrocytoma; LGA=Low Grade Astrocyto-
ma; GG=Ganglioglioma; DA=Diffuse Astrocytoma, 
PMA=Pilomyxoid Astrocytoma; PXA=Pleomorphic 
Xanthoastrocytoma; ODG=Oligodendroglioma; 
NC=Neurocytoma; DNET= Dysembryoplastic 
Neuroepithelial Tumor; GC=Gangliocytoma; GN-
T=Glioneuronal Tumor; Mixed=Mixed Histology)

Institu-
tional 
cohort

 To-
ronto

Stan-
ford

No. of 
patients

 220 31

Age 
(mean) 

(yr)

 8.53 7.97

Male 
sex 

(No.) 
(%)

 114 
(52)

18 
(58)

f JPA 122 21
LGA 32 -
GG 30 7
DA 12 -

PMA 9 3
PXA 6 -
ODG 2 -
NC 2 -

DNET 2 -
GC 1 -

GNT 1 -
Mixed 1 -

Molecu-
lar sub-
group 
(No.) 
(%)

BRAF 
fusion

148 
(67)

24 
(77)

BRAF 
muta-
tion

72 
(33)

7 (23)

Fig. 1. Neural Network architectures used for the experiments. (Note:    Input 
layer (size),       Fully connected layer (size),        ReLU,      Dropout(probability),  

Softmax)
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Data visualization

t-SNE was used for data visualization (Figure 2). No apparent sepa-
ration was found between the internal and external data set, neither 
for the whole data nor for the two classes. However, locality of BRAF 
V600E mutation examples suggests separability of the two classes. 

Classification model evaluation and comparison of 
performance 

AUC values over the entire training or external data were averaged 
for each model and performances were compared using two sided 
two-sample KS tests (Table 2). The performance of the five models 

over a 2.25% step wise increase of training data is shown in Figure 
3. All classifiers showed a decreasing variance on the internal data 
with a continued increase in sample size. While the performance 
on the internal data was significantly higher for RF and XGBoost 
(p-values: all<0.0001 for RF vs. NN1/NN2/NN3 and all<0.0001 
for XGBoost vs. NN1/NN2/NN3), their performance was signifi-
cantly lower and their variation was higher on the external data 
compared to the three NNs (Figure 4) (p-values: all p<0.0001 
for RF vs. NN1/NN2/NN3 and all p<0.0001 for XGBoost vs. 
NN1/NN2/NN3). XGBoost had a significantly different perfor-
mance compared to RF on the external data (p-value:<0.0001) 
while demonstrating a higher variance. On the internal data, NN1 
and NN2 showed similar performance, but they were significant-
ly different from NN3 (p-value: <0.0001 for NN1 vs. NN3 and 
p-value: 0.016 for NN2 vs. NN3). All three NNs demonstrated 
similar high performance and low variance on the external cohort 
up until 70% of the training data, where performance dropped to 
the level of XGBoost and their variance increased. Mean, upper 
and lower confidence interval sensitivity, specificity, accuracy, and 
F1 score across the entire training and external validation dataset 
are summarized in Table 3. At 60% of the training data (132 pa-
tients), NN1 and NN2 yielded the best results on the validation 
data (NN1 and NN2: mean AUC with (95% Confidence Interval): 
0.83 (0.82-0.84)). NN3 performed slightly below NN1 and NN2: 
0.82 (0.81-0.84). RF and XGBoost AUC values at 60% were 0.72 
(0.7-0.74) and 0.75 (0.72-0.78), respectively. On the training data 

Fig. 3. Area under the curve performance of different models on internal and external cohorts across training dataset sizes. A: Random Forest; B: XGBoost; C: 
Neural Network 1; D: Neural Network 2, E: Neural Network 3. (Note:         Cross validation mean AUC,          External validation AUC) 

A

C

B

D

E

Fig. 2. tSNE Visualization of the dataset: Circles denote BRAF fusion, while 
plus markers represent BRAF V600E mutation. Green and grey colors highlight 

internal and external data, respectively. (Note:   Internal,   External)
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Fig. 4. Comparison of area under the curve performance of different models across training dataset sizes. (Note:         External validation AUC (NN_100_20_2),          
       External validation AUC(NN_50_10_2),          External validation AUC(NN_50_20_10_2),         External validation AUC(XGBoost),          External validation 

AUC(Random forest)).

Tab. 2. Comparison of model performance. Two-sided 
two-sample Kolmogorov-Smirnov test on mean AUCs 

across all training sample sizes for each pair of the five 
models. (Note: Neural Network 1 (NN1) (100:20:2); Neural 

Network 2 (NN2) (50:10:2); Neural Network 3 (NN1) 
(50:20:10:2); Random Forest (RF);  eXtreme Gradient Boost 

(XGBoost))

Internal

 

NN1  0.42 <0.0001 <0.0001

NN2 0.42  0.016 <0.0001 <0.0001

NN3 <0.0001 0.016  <0.0001 <0.0001

XGBoost <0.0001 <0.0001 <0.0001  0.99

RF <0.0001 <0.0001 <0.0001 0.99  

External

NN1  0.59 0.1 <0.0001 <0.0001

NN2 0.59  0.1 <0.0001 <0.0001

NN3 0.1 0.1  <0.0001 <0.0001

XGBoost <0.0001 <0.0001 <0.0001  <0.0001

RF <0.0001 <0.0001 <0.0001 <0.0001  

Tab. 3. ROC related Param-
eters in differentiating the 

poorly and well/moderately 
differentiated groups of ESC. 
Mean performance metrics 

over entire training and 
validation data set.

Metric Model Training dataMean (CI) Validation dataMean (CI)

0.59 RF 0.85 (0.82-0.89) 0.71 (0.71-0.71)
XGB 0.85 (0.81-0.88) 0.69 (0.63-0.74)
NN1 0.82 (0.79-0.85) 0.71 (0.71-0.71)
NN2 0.81 (0.77-0.84) 0.71 (0.71-0.71)
NN3 0.81 (0.77-0.84) 0.73 (0.70-0.76)

0.59 RF 0.87 (0.84-0.90) 0.82 (0.79-0.85)
XGB 0.85 (0.82-0.88) 0.87 (0.84-0.90)
NN1 0.85 (0.81-0.88) 0.92 (0.91-0.93)
NN2 0.85 (0.82-0.89) 0.93 (0.92-0.94)
NN3 0.85 (0.81-0.89) 0.91 (0.89-0.93)

0.59 RF 0.86 (0.84-0.88) 0.80 (0.77-0.82)
XGB 0.85 (0.83-0.87) 0.83 (0.81-0.85)
NN1 0.84 (0.82-0.86) 0.87 (0.87-0.88)
NN2 0.84 (0.82-0.86) 0.88 (0.87-0.89)
NN3 0.83 (0.81-0.86) 0.87 (0.86-0.88)

0.59 RF 0.81 (0.78-0.83) 0.62 (0.59-0.64)
XGB 0.79 (0.77-0.81) 0.65 (0.62-0.67)
NN1 0.78 (0.75-0.80) 0.72 (0.71-0.73)
NN2 0.77 (0.75-0.79) 0.73 (0.72-0.75)
NN3 0.77 (0.74-0.79) 0.72 (0.70-0.74)

<0.0001

NN1 NN2 NN3 XGBoost RF
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set, RF had the highest AUC at 60%: 0.87 (0.86-0.90). XGBoost 
performed slightly below RF at 0.87 (0.85-0.89). NN1 and NN2 
were performing at the same level: 0.85 (0.83 0.87) and NN3 was 
slightly below: 0.84 (0.81 0.86). 

DISCUSSION
In this bi-institutional study, we assessed five commonly used ML 
classifiers to predict BRAF fusion or BRAF V600E mutation on 
independent data using a systematic step-wise increase of training 
data. Our results indicate that although classifier performance is 
generally high, certain classifiers can perform better than others. 
We found that NNs1-3 outperformed XGBoost and RF on the 
external data, while they demonstrated lower AUCs on the internal 
data. This was visible starting from >20% of the training data or 
42 patients. NNs1-3 achieved a high level of performance on the 
external data with only a limited amount of training data. This re-
mained at a similar level with further increase of training data. At 
70% of the training data, performance levels of NNs1-3 dropped 
to the level of XGBoost. This effect was attributed to overfitting. 
NN1 and 2 (100:20:2 and 50:10:2) yielded the best AUC on the 
external data at 60% of the training data (AUC: 0.83). Though dif-
ferences in performance in NN1-3 were not statistically significant 
on the external data, we observed the least variation in performance 
with NN1. 

RF has been a popular data mining and statistical tool in radiomics 
research due to its transparency and success in classification and 
regression tasks [20, 28-31]. It generates a large number of decision 
trees using random subsamples of the training data while also ran-
domly varying the features used in the trees [32]. GBT differ from 
RF in that they add decision trees sequentially so that errors of the 
previous tree are revised by the next tree. XGBoost further enhances 
this process by correlating the new tree with the negative gradient 
of the loss function associated with the whole tree assembly [33]. 
Accordingly and in line with a prior radiomics study on response 
assessment of rare cancers, XGBoost significantly increased our 
model’s performance compared to RF on the external data set [34]. 

The rationale to applying NN with different architectures was that 
it employs several layers possibly facilitating a higher dimensional 
feature selection algorithm. Similar to our results, Yun et al. [35] 
and Bae et al. [36] found that a NN approach using radiomics fea-
tures as input outperformed other ML classifiers on external data 
sets differentiating brain tumor types. In the study of Yun et al., 
NNs fed with radiomics features significantly outperformed sup-
port vector machine, RF, generalized linear model, human read-
ers, and CNN on external validation data [35]. The relatively low 
performance of CNN was attributed to the small training data set 
(n=123) and heterogeneity in image acquisition [35]. Using a train-

ing cohort of 166 patients with glioblastoma or brain metastasis, 
Bae et al. could show that deep neural networks outperform human 
readers and traditional ML classifiers including adaptive boosting, 
support vector machine, and linear discriminant analysis [36]. 

Our study also investigated the role of the training data sample size 
on model performance on the external data set. Using an incremen-
tal 2.25% increase in training data, we found the best performance 
of NN1 and NN2 on the external data at 60% or 132 patients. 
Notably, performance was high on the external data starting already 
at 20% of the training data, however, there was marked variation 
on internal cross validation. This may be explained by the hetero-
geneity of the training data diagnoses and the relative homogeneity 
of the validation set.  

NN demonstrated increased performance over conventional ML 
classifiers [35] and CNN [35] when MRI data is limited. We there-
fore recommend a combination of radiomic features and NN clas-
sification as a ML classifier when data are limited. 

Our study has several limitations. With the small samples, large fea-
ture sets, and low signal-to-noise that are characteristic of neuroim-
aging data, prediction models built using neuroimaging data are at 
a high risk of overfitting [37]. We experienced overfitting of NN1-3 
at 70% of the training data. Due to the retrospective and bi-in-
stitutional nature of our study, there were heterogeneous FLAIR 
sequence acquisitions, various scanner vendors, and different field 
strengths in our sample. Given that this heterogeneity reflects clin-
ical practice, a reliable model should incorporate these technical 
variations. For our study, we only used FLAIR images. Incorporat-
ing additional MR imaging sequences such as T2-weighted images, 
DWI, and contrast-enhanced T1-weighted sequences could further 
increase model performance.

CONCLUSION
A combination of radiomic features and NN led to a high per-
forming and reliable model for the challenging classification task 
of differentiating the molecular status of pediatric low grade glioma 
based on MRI data. The model was superior to RF and XGB for 
small datasets. This may have implications for the classification of 
other tumors with limited sample sizes as well. 
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