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The relationship between Homeostasis Model Assessment of Insulin 
Resistance (HOMA-IR) and Breast Cancer (BC) biomarkers such as leptin, 
Monocyte Chemoattractant Protein-1 (MCP-1), resistin, adiponectin is little 
known in the medical literature based on probabilistic modeling. The current 
report focuses on the inter-relationships between HOMA-IR and BC markers. It 
has been derived from the gamma fitted mean HOMA-IR model that it is higher 
for healthy women (P<0.0001) than BC patients. It is positively associated 
with leptin (P=0.0747), while it is negatively associated with the interaction 
effect of insulin and leptin (insulin*leptin) (P=0.0016). Variance of HOMA-IR 
is negatively associated with adiponectin (P=0.0471), while it is positively 
associated with resistin (P=0.0755) and the interaction effect of glucose and 
adiponectin (glucose*adiponectin) (P=0.0305). From the log-normal HOMA-IR 
fitted model, it is shown that variance of HOMA-IR is negatively associated with 
leptin (P=0.0599). From MCP-1 fitted model, it has been shown that variance 
of MCP-1 is negatively associated with HOMA-IR (P=0.0055), while resistin 
fitted model has shown that mean resistin is negatively associated HOMA-IR 
(P=0.0698) and it is positively associated with the interaction effect of age and 
HOMA-IR (age*HOMA-IR) (P=0.1059). Several relationships between HOMA-
IR & BC markers are reported in the current article. It is interpreted that both 
HOMA-IR & BC markers are closely interlinked.
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BC disease is the most life-threatening and frequently 
occurring malignant tumor in women.  The evidence which 
connects diabetes’ biomarkers with BC biomarkers is highly 
controversial. Recently, the inter-relationships between diabetes 
and BC biomarkers have been derived using advanced statistical 
modeling by Kim et al. [1]. and Hockaday et al. [2] present 
several points that undermine faith in HOMA as a balance of 
insulin resistance. HOMA’s input consists of fasting glucose and 
insulin concentration and thus will reveal conditions present 
in the basal state, with the liver as the main focus for insulin 
action as exposed by the suppression of gluconeogenesis. 
The HOMA-IR has been observed to be associated with the 
minimal model measures of insulin action and β-cell function, 
and hyperinsulinemic glucose clamp, primarily in middle-
aged people and younger with normal glucose tolerance and 
smaller groups of middle-aged people with type 2 diabetes [2-
4]. Research reveals that HOMA and other shortcut insulin 
measures of resistance and secretion can give useful information 
on risk of growing diabetes and related conditions [4-6]. Some 
research articles show the association between HOMA-IR, 
BMI, glucose and insulin [7, 8]. 

The diabetes mellitus type 2 and BC disease could be associated 
via metabolic mechanisms connected biomarker insulin and 
its growth factor [3]. Insulin plays as an advancement factor 
multiplying cell proliferation and cell death. In addition, insulin 
is a strong mutagenic agent in cells and tissue [9, 10]. Females 
are at the highest risk for BC disease if insulin level is high [11]. 
HOMA-IR is a dependable insulin resistance indicator [12], 
which is connected with reduced BC survival [13]. It is known 
that both diabetes mellitus type 2 and BC markers are the 
interaction yields of genetic and environmental risk factors that 
share several comorbidities [14].  An investigation on diabetes 
biomarkers such as fasting blood glucose, C-peptide and 
HOMA in some Jordanian BC disease females was performed 
by Al-Zeidaneen et al. [15].  

A short literature review regarding the associations of HOMA-IR 
with BC markers is presented above. The best of our knowledge, 
there are very few articles focusing on the relationship between 
HOMA-IR and only one or two BC, or diabetes mellitus type 
2 biomarkers. Most of the earlier relationships are studied based 
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on simple, or multiple, or logistic regression analyses, which are 
controversial.  For the present case, there are 10 multivariate 
variables, and the responses are HOMA-IR and BC markers 
such as adiponectin, leptin, resistin and MCP-1. There is no such 
study for understanding the interrelationships between HOMA-
IR and BC markers based on suitable statistical modeling. This 
invites to perform the present study. The objectives of the 
current study are:

1. Examining the associations of HOMA-IR with BC 
markers (adiponectin, leptin, resistin and MCP-1) along 
with the diabetes mellitus type 2 biomarkers (glucose and 
insulin levels) and age, BMI, types of subject.

2. Conversely, examining the associations of each BC marker 
with HOMA-IR and the rest explanatory factors.   

These above objectives are focused in the article using the sections 
materials & methods, statistical analysis & results, discussions, 
and along with conclusions.

MATERIALS AND METHODS 

Materials

Study designs and subjects: The present study is performed 
using a secondary data set which is available in UCI Machine 
Learning Repository. The study subjects of the data set were 
154 Portuguese females, who were chosen from the University 
Hospital Center of Coimbra (UHCC) at Gynecology 
Department between 2009 and 2013, and they were first 
diagnosed with BC. The approved BC patients had been 
categorized into 4 groups depending on their BMI and the BC 
disease status such as absence or presence. These 4 categories 
are: (1) without overweight (BMI <25 kg/m2) and control (i.e., 
no BC disease), subjects number (n=29; (2) with overweight 
(BMI>25 kg/m2) & control, n = 48; (3) BC disease without 
overweight (BMI<25 kg/ m2), n = 30; and (4) BC disease with 
overweight (BMI>25 kg/m2), n=47. The first group (without 
overweight & control) were selected from the Internal Medicine 
Department of the aforementioned hospital. Also, women for 
the second group (overweight & control) were selected from the 
same Department, and the other two groups were selected from 
the Gynecology Department of UHCC. These subjects were 
chosen understanding that they had never been identified with 
BC family history or malignant disease. These selected subjects 
were free from any infection or acute disease at the study time. 
The UHCC Ethical Committee approved the study design, and 
all considered subjects submitted their written consent before 
joining the study. For the final study, only 116 (52 control 
and 64 with BC) subjects were selected, and the remaining  
38 subjects were not considered in the study due to high BMI 
(>40 kg/m2).

The data set has been posted in UCI Machine Learning 
Repository, and its elaborate discussion is given in [16, 17]. 
The data set contains 10 covariates/ factors which are Age, 
BMI (kg/m2), HOMA-IR, Insulin (μU/mL), Glucose (mg/dL), 
Adiponectin (μg/mL), Leptin (ng/mL), Resistin (ng/mL), MCP-
1, Subject types (ST) (1=healthy controls; 2= BC patients).

Statistical methods

The above considered data set is a multivariate form. The 
aimed responses are HOMA-IR, resistin, leptin, MCP-1 and 
adiponectin, which are all positive heterogeneous continuous 
and non-normally distributed. These dependent variables can 
be properly modeled applying joint generalized linear models 
(JGLMs) using both the gamma and log-normal distributions, 
which are described in [18-20]. It is elaborately described in the 
book by Lee et al. [18]. For ready reference, it is described here 
in very shortly. Note that JGLMs of MCP-1 have been derived 
by Kim et al. [21], while adiponectin, resistin and leptin JGLMs 
have been developed by Das and Lee [22-24]. The present report 
derives the HOMA-IR joint models using both the distributions.

JGLMs under log-normal distribution For the positive 
HOMA-IR random response variable Yi,  along with 
heteroscedastic variance 2

iσ  (known as dispersion parameter), if 
E(Yi)=µi (known as mean parameter) and Var(Yi) = 2

iσ µi
2  = 2

iσ
)( iV μ  say, where V(∙) is the variance function, and  generally, the 

log transformation ( )i iZ logY= is used to stabilize the variance 
Var(Zi) ≈ 2

iσ , while the variance may not be stabilized always. 
For this situation, improved JGLMs for mean and dispersion 
are considered. Under the response log-normal distribution, 
JGLMs for mean and dispersion (Zi=logYi) are presented by

( ) ( ) 2
i zi i ziE Z  and Var Z ,µ σ= =

( )t 2 t
zi i zi ix   and log  g ,µ β σ γ= =

where xi
t and gi

t are respectively, the vectors of independent 
explanatory variables linked to the mean regression coefficients 
β  and dispersion regression coefficients γ. Maximum likelihood 
(ML) and  restricted ML (REML) methods are respectively used 
for estimation of mean and dispersion parameters [18, 19].  

JGLMs under gamma distribution 

For the above positive HOMA-IR random response variable 
Yi, with E(Yi)=µi and Var(Yi) = 2

iσ )( iV μ , the variance function 
V( ) has two  parts in GLMs, where one part depends on the 
mean changes, while the other ( 2

iσ ) is independent of mean 
adjustment. Note that V( ) characterizes the GLMs family 
distribution. For instance, the distribution is gamma if V( μ ) = 

2μ , Poisson if V( μ ) = μ , and  normal if V( μ )= 1, etc.

The JGLMs for the mean and dispersion are βμη t
iii xg == )(  

and γσε t
iii wh == )( 2 , 

where )(⋅g  and )(⋅h  are the GLM link functions associated 
with the mean and dispersion, respectively; and the vectors 

t
ix ,  t

iw  are associated respectively, with the mean and 
dispersion regression coefficients. Maximum likelihood (ML) 
and the restricted ML (REML) methods are respectively used 
for estimation of mean and dispersion parameters [18, 19].  

STATISTICAL ANALYSIS & RESULTS

Statistical analysis

The random variable HOMA-IR is treated as the response variable 
and the rest others are treated as the independent variables. Note 
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that the response HOMA-IR variance is not stabilized by any 
appropriate transformation; therefore, it is modeled herein using 
both the log-normal and the gamma JGLMs. The final model is 
selected based on the lowest Akaike Information Criterion (AIC) 
value (within each class), that minimizes both the squared error 
loss and predicted additive errors [25]. Some partially significant 
or insignificant effects are considered in both the models due to 
marginality rules suggested by Nelder [26], and also for better 
fitting [25]. It is well-known that partially significant effects are 
recommended as confounders in Epidemiology. The HOMA-IR 
JGLMs analysis results are presented. Note that the gamma fit 
(AIC= -56.774) shows better results than log-normal fit (AIC= 
-37.27).

It is important to verify the data developed model using model 
diagnostic tools before accepting it as the valid final model. Note 
that all valid interpretations are derived from the final accepted 
model. The derived gamma fitted HOMA-IR model has been 
examined by model diagnostic residuals plot (in Figure 1. and 
normal probability plot (in Figure 2. In Figure 1, the HOMA-
IR gamma fitted absolute residuals are plotted with respect to 
the fitted values. It is observed that all the absolute residuals 

are randomly located at a point, except only two points, which 
indicates that variance is constant with the running means. One 
smaller residual is located at the right boundary, so the smooth 
fitted curve is decreasing. Figure 2 reveals the mean HOMA-IR 
gamma fitted normal probability plot, which does not show any 
fit discrepancy. So, Figure 1 and Figure 2 have supported that 
the gamma fitted HOMA-IR model is approximately true mode 
(Table 1).

RESULTS 

Summarized JGLMs results for HOMA-IR are displayed in 
Table 1. Fitted mean HOMA-IR model (Table 1) shows that 
mean HOMA-IR level is higher for healthy women (P<0.0001) 
than BC patients. It is positively associated with leptin 
(P=0.0747), while it is negatively associated with the interaction 
effect insulin*leptin (P=0.0016). Variance of HOMA-
IR is negatively associated with adiponectin (P=0.0471), 
while it is positively associated with resistin (P=0.0755) 
and the interaction effect glucose*adiponectin (P=0.0305).  
From the log-normal HOMA-IR fitted model (Table 1), it is 

Tab.1. Results for mean and 
dispersion models for HOMA-IR 
from Gamma and Log-Normal fit

Model Covariate
Gamma fit Log-normal fit

Estimate S.E. t-value P-value estimate S.E. t-value P-value

Mean

Constant -3.1870 0.1111 -28.68 0.0232 -3.0560 0.1282 -23.84 <0.0001
BMI(x2) 0.0214 0.0039 5.39 <0.0001 0.0156 0.0041 3.78 0.0003
Insulin(x4) 0.4245 0.0211 20.11 <0.0001 0.3940 0.0235 16.76 <0.0001
BMI*Insulin -0.0041 0.0007 -5.47 <0.0001 -0.0030 0.0008 -3.76 0.0003
Glucose(x3) 0.0187 0.0004 44.36 <0.0001 0.0188 0.0006 30.69 <0.0001
Glucose*Insulin -0.0013 0.0000 -31.67 <0.0001 -0.0012 0.0001 -22.25 <0.0001
Leptin(x6) 0.0016 0.0008 1.80 0.0747 0.0028 0.0010 2.77 0.0066
Insulin*Leptin -0.0004 0.0001 -3.23 0.0016 -0.0005 0.0002 -3.31 0.0013
Subject’s type -0.0508 0.0126 -4.02 <0.0001 -0.0696 0.0131 -5.33 <0.0001

Dispersion

Constant -15.789 3.5474 -4.451 <0.0001 -5.3906 2.3409 -2.303 0.0232
Leptin(x6) -0.005 0.0084 -0.538 0.5917 -0.0176 0.0092 -1.902 0.0599
Glucose(x3) 0.133 0.0397 3.345 0.0011 0.0153 0.0228 0.671 0.5037
Adiponectin(x7) -0.457 0.2274 -2.008 0.0471 -0.2384 0.1785 -1.335 0.1847
Glucose* 
Adiponectin 0.005 0.0025 2.192 0.0305 0.0028 0.0019 1.444 0.1517

Age(x1) 0.167 0.0640 2.605 0.0105 -0.0551 0.0159 -3.463 0.0008
Age*Glucose -0.003 0.0008 -3.496 0.0007 ……. …….. ……… …….
Insulin(x4) 0.244 0.1185 2.062 0.0416 0.5235 0.0861 6.083 <0.0001
Age*Insulin 0.007 0.0015 4.284 <0.0001 0.0038 0.0013 3.011 0.0032
Glucose*Insulin -0.003 0.0010 -3.205 0.0018 -0.0040 0.0008 -5.082 <0.0001
Resistin(x8) 0.028 0.0158 1.795 0.0755 ……. …….. ……. …….

AIC -56.774 -37.27

Fig.1. For the joint gamma fitted HOMA-IR models (Table 1), the absolute 
residuals plot with respect to the HOMA-IR fitted values

Fig.2. For the joint gamma fitted HOMA-IR models (Table 1), the normal 
probability plot for the HOMA-IR mean model
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shown that variance of HOMA-IR is negatively associated with 
leptin (P=0.0599).

From MCP-1 fitted model [21], it has been shown that variance 
of MCP-1 is negatively associated with HOMA-IR (P=0.0055), 
while resistin fitted [22] model has shown that mean resistin is 
negatively associated HOMA-IR (P=0.0698) and it is positively 
associated with the interaction effect of age and HOMA-IR 
(age*HOMA-IR) (P=0.1059). 

Gamma fitted HOMA-IR mean ( ) model (from Table 1) is 

 = exp(-3.1870  + 0.0214 BMI  + 0.4245 Insulin - 0.0041 
BMI*Insulin + 0.0187 Glucose - 0.0013Glucose*Insulin + 
0.0016 Leptin - 0.0004 Insulin*Leptin - 0.0508 Subject type),

and the gamma fitted HOMA-IR variance ( ) model (from 
Table 1) is 

 = exp(-15.789 - 0.005 Leptin + 0.133 Glucose - 0.457 
Adiponectin + 0.005 Glucose*Adiponectin + 0.167 Age - 
0.003Age*Glucose  + 0.244 Insulin + 0.007 Age*Insulin - 0.003 
Glucose*Insulin + 0.028 Resistin).

For the same data set, the models for breast cancer biomarkers 
such as MCP-1 [21], resistin [22], adiponectin [23] and  leptin 
[24] have already been published. 

DISCUSSION

Inter-relationships between HOMA-IR and BC biomarkers 
are reported herein from the models of HOMA-IR, and as well 
as from the models of BC biomarkers such as MCP-1, leptin, 
resistin, and adiponectin. These BC biomarkers models have 
been reported in [21-24], while the model of HOMA-IR  is 
reported herein in Table 1.

Fitted HOMA-IR mean model (Table 1) shows that mean 
HOMA-IR level is negatively associated with subject’s type 
(1=healthy controls; 2=BC patients) (P<0.0001), concluding 
that mean HOMA-IR level is higher for healthy women 
(P<0.0001) than BC patients. It is positively associated with 
leptin (P=0.0747), interpreting that HOMA-IR rises as leptin 
increases. Mean HOMA-IR level is negatively associated with 
the interaction effect of insulin*leptin (P=0.0016), implying 
that it decreases as the interaction effect increases. Note that 
both insulin (P<0.0001) and leptin (P=0.0747) are positively 
associated with mean HOMA-IR, so these marginal effects 
increase the HOMA-IR level, but their joint interaction effect 
decreases the mean HOMA-IR level.     

Further, the mean HOMA-IR is positively associated with BMI 
(P<0.0001), or glucose (P<0.0001), concluding that it increases 
as BMI, or glucose level increases. Also the mean HOMA-
IR is negatively associated with BMI*insulin (P<0.0001), or 
glucose*insulin (P<0.0001), implying that it decreases as the 
interaction effect BMI*insulin, or glucose*insulin increases. 
Note that all these three marginal effects such as BMI, glucose 
and insulin are positively associated with the mean HOMA-IR, 
while their interaction effects BMI*insulin and glucose*insulin 
are negatively associated with the mean HOMA-IR. Thus, BMI, 
glucose and insulin level increase the mean HOMA-IR level, but 

their joint interaction effects BMI*insulin and glucose*insulin 
decrease the mean HOMA-IR level.

Fitted HOMA-IR variance model (Table 1) presents that 
variance of HOMA-IR level is negatively associated with 
adiponectin (P=0.0471), indicating that HOMA-IR level 
variance decreases as adiponectin level increases.  HOMA-IR 
level variance is positively associated with resistin (P=0.0755), or 
glucose*adiponectin (P=0.0305), concluding that it increases as 
resistin, or glucose*adiponectin increases.  From the log-normal 
HOMA-IR fitted variance model, it is shown that variance of 
HOMA-IR is negatively associated with leptin (P=0.0599), 
implying that it decreases as the leptin level increases.

Further HOMA-IR level variance is positively associated with 
age (P=0.0105), or glucose (P=0.0011), or insulin (P=0.0416), 
age*insulin (P<0.0001), concluding that it increases as any of 
them increases.  Also HOMA-IR level variance is negatively 
associated with age*glucose (P=0.0007), or glucose*insulin 
(P=0.0018), implying that it decreases as any of them increases.  

From the resistin fitted model [22], it is shown that the mean 
resistin level is negatively associated with HOMA-IR (P=0.0698), 
interpreting that it decreases as HOMA-IR level increases. In 
addition, the mean resistin level is positively associated with the 
interaction effect age*HOMA-IR (P=0.1059), implying that 
it increases as age*HOMA-IR increases. From MCP-1 fitted 
model [21], it is shown that variance of MCP-1 is negatively 
associated with HOMA-IR (P=0.0055), concluding that MCP-
1 variance level decreases as HOMA-IR level increases.

The above results are displayed herein from the models of 
HOMA-IR, resistin and MCP-1. No relationship between 
HOMA-IR and adiponectin, or HOMA-IR and leptin has been 
observed from adiponectin [23] and leptin models [24]. These 
above associations between HOMA-IR and BC biomarkers are 
summarized in Table 1. The best of our knowledge, the present 
report first derives the complex inter-relationships between 
HOMA-IR and BC biomarkers with many interaction effects.  
Most of the current outcomes are completely new in medical 
literature, so the current outcomes are not compared with the 
earlier results. 

CONCLUSIONS

The inter-relationships between HOM-IR and BC biomarkers 
are derived in the current report based on probabilistic modeling, 
where models are accepted based on graphical diagnostic 
checking, lowest AIC value, comparison of response HOMA-
IR distributions, and small standard error of the estimates. The 
present associations between HOMA-IR and BC biomarkers, 
though not completely conclusive, are revealing. Medical 
research should have greater faith in the current probabilistic 
models as they have been derived based on many statistical 
criteria satisfaction. In the report, it is concluded that both 
HOMA-IR and BC biomarkers are closely interlinked. Medical 
practitioners can predict the BC disease status through the 
relationships between HOMA-IR and BC biomarkers from this 
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report. In addition, it may help the BC researchers to develop 
physiological and biological explanations of these relationships 
between HOMA-IR and BC biomarkers. Women will be 
benefited from the report.
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