
Oncology
and Radiotherapy ©

− 

Inspection of the global behaviour of a radiogenic cancer 
treatment nonlinear model

Kaushik Dehingia1, Bhagya Jyoti Nath2, Hemanta Kumar Sarmah3, Anusmita Das4 
1, 3, 4 Department of Mathematics, Guwahati University, Assam, India
2 Department of Mathematics, Barnagar College, Sorbhog, Assam, India

Received: - 03 July, 2020

Accepted: - 20 July, 2020

Published: - 30 July, 2020

Word count: 2893 Tables: 01 Figures: 03 References: 20

Address for correspondence:

Kaushik Dehingia, Department of Mathematics, Guwahati University, Assam, 
India, email: kaushikdehingia17@gmail.com

Neoplastic diseases are liable for 12% of deaths around the world. The 
researchers of several disciplines tried to observe the dynamics of tumour 
growth with the response to other cell population of the physical body. 
They need the used ever-new technique to regulate the tumour growth 
and its eradication from the physical body. Clinically, there are many 
treatment strategies like surgery, chemotherapy, radiotherapy, gene therapy, 
immunotherapy and combination of this etc. to beat the disease. During this 
paper, we analysed a model for the effect of radiogenic therapy within the 
treatment of cancer. Local stability analysis at various equilibrium points has 
discussed during this paper. For greater interest, we have shown that the 
tumour free equilibrium point is globally asymptotically stable. We even have 
done numerical verification of our mathematical result.
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A multi-faceted disease, which involves heterogeneous  
interaction between abnormal cells and surrounding  
environment of it, called Cancer [1]. When the body is not  
capable to control the growth of abnormal cell and when 
the body cell lose their ability to die, occur cancer [2]. 
Surgery, chemotherapy, radiotherapy, hormone therapy, and 
immunotherapy, either in isolation or in the combination of 
two or more of these are prominently used in cancer treatment 
[3]. With the utilization of radioisotopes, radiation is highly 
effective to eradicate tumours [4]. Chemotherapy is the 
treatment in which mostly used chemically designed drugs. 
Today, the researchers heavily busy with immunotherapy 
because it contains lesser side effects than other treatments. 
Immunotherapy increasing the effectiveness of the immune 
system to counter cancer cells by emphasizing the body's 
own natural ability to battle cancer. It encompasses the use 
of cytokines with ACI, engineering genetic antibody called 
(mAbs), and IL-2 therapy to improve or restore immune system 
function. However, chemo-immunotherapy enriches tumour 
recession and antitumor immune response [1]. Speciously 
vaccines, monoclonal antibodies, lymphocytes and cytokines 
are the key tools for tumour immunology [5]. The harshness 
of disease, treatment procedure and asset of patients’ immune 
system are the key factors on which cancer treatment depends 
[6-9].

Gene therapy may use when no other therapies which are 
mentioned above treated well to the patient’s body. By 
introducing a well-designed gene into the cells of a patient 
gene therapy correct an inborn inaccuracy of metabolism, alter 
or repair an acquired genetic abnormality, and provide a new 
function to a cell [10]. Recently, the research has proven that 
with the lesser effect on normal tissues a combination of gene 
and radiotherapy called radiogenic therapy may perform well in 
cancer curability [4, 11, 12]. Also, it has clinically demonstrated 
that the use of radiogenic therapy has many potential 
reimbursements with different toxicity profiles of both two 
therapies [13]. Radiations counter abnormal cells and increase 
the proliferation rate of the body’s immune cells and greater the 
anti-tumour response [11]. At the same time, gene therapy also 
kills tumour cells by inserting toxin genes under the control of a 
tumour-specific promoter and blocks the mechanisms by which 
tumours evade immunological destruction [2].

Mathematical modelling is increasing rapidly to predict the 
effectiveness of specific treatment. Modelling of any biological 
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phenomena links the experimental result to computational 
results [14, 15]. Mathematical models played an active role in 
the research of disease dynamics and are becoming instrumental 
in planning treatment strategies and give deep insight into 
understanding complex biological processes [16]. Modelling of 
cancer is usually divided into two phases, the one is to deal with 
the concept of the system without treatment, and another one 
is treatments in the evocative form [1]. Treatments with new 
features are evolved in nowadays, and it becomes a broad research 
area for any kind of researchers. In this study, we have proposed 
a radiogenic therapy cancer model by modifying the Tsygvintsev 
et al. gene therapy model [12] and based on radiotherapy model 
[9] with some assumptions. Further, we have analysed the 
dynamics of the model using the basics of mathematics.

Some mathematical preliminaries

Suppose that y=f(y) is a vector form of a set of nonlinear ODE. 
Suppose that y* is an equilibrium point. Let the Jacobian matrix 
corresponding to the equilibrium point y* be as J*.

Lemma: An equilibrium point y* of the differential equation 
y=f(y) is stable if all the eigenvalues of J*, the Jacobian evaluated 
at y*, have negative real parts. The equilibrium point is unstable 
if at least one of the eigenvalues has a positive real part [17].

Definition: A Lyapunov function W(Y) is a function consisting 
of state variables which has a minimum at an equilibrium point 
and which has no local minima [17].

Lemma: Let Ω be a region of phase space containing the 
equilibrium point y*. Let W: Ω→R be a continuous and 
differentiable function. W is a positive definite function for the 
point y* if it satisfies the following two conditions.

(i)W(y*) = 0 and

(ii) W(y)>0 for { }*y y∈Ω − [17]

Lemma: Let y* be an equilibrium point of the differential 
equation y=f(y) and let W be a positive definite function for this 
point. The equilibrium point is globally asymptotically stable 
i.e., the solutions tend to this point for initial conditions in the 
neighbourhood of y*  if W (y) <0 for all y ∈ Ω -{y*} [17].

The model

In this study, we formulate our model that primarily based on 
Tsygvintsev et al. [12] gene therapy model. The model deals 

with effector cell population E(t), tumour or cancerous cell 
population T(t), gene therapy u1 (one kind immunotherapy) 
and a single dose of radiotherapy γ.

The effector cell: To model effector cells E(t) at any time 
t>0, our first assumption is that the NK cells, Interleukin-2, 
LAK, Lymphocytes, T helper cells all belong to effector cells 
population. Next, we supposed that during gene therapy, the 
immune system strongly respond to the tumour site and it is 
represented by the term cT. The effector cells proliferate itself 
in its site which is represented by a Michaelis-Menten fashion

pE
E f+

 , which is a decreasing function of effector cells. –dE is 

the natural decay of effector cells. The external immunotherapy 
source to the effector site is represented by the term u1, which 
is time-dependent. From these assumptions, the dynamics 
of effector cell population can be expressed by the differential 
equation

1  dE pEcT dE u
dt E f

= + − +
+      

The tumour cell: Tumour cells T(t) proliferate logistically which 
can be modelled by rT(1-bT), at any time t>0 with parameters  
and b assigning the cancer growth rate and cancer cell capacity 

respectively. The term aET
g T

−
+

used for the high cancer clearance 

during gene therapy with the effector cells negative response. 
The single-dose radiation γ kills only the tumour direct contact 
with tumour site [9]. Keeping in these, the dynamics of tumour 
cells represented by following differential equation.

1   dE pEcT dE u
dt E f

= + − +
+   

The overall model: With the above discussion, we may finalize 
our model, which is

1   dE pEcT dE u
dt E f

= + − +
+   

( ) 1  dT aETrT bT T
dt g T

γ= − − −
+

Assumptions: 

1. The effector cells E(t) proliferate by itself with a decreasing 
function of Michaelis-Menten form

2. The effector cells E(t) arise with direct contact of tumour T(t) 

Tab. 1. The parameter value for the model Parameters Meaning Values interval Source
c Cancer antigenicity 0.05 (1/time) [10-3, 0.5] [12]
u1 Immunotherapy term 1 (cell/time) [10-2, 102] [12]
p Proliferation rate of E 0.1245 (1/time) 0.1245 [12]

f Half-saturation for E 
proliferation term 10-3, (cells) [10-5, 1] [12]

d The half-life of effector cells E 0.03 (1/time) 0.03 [12]

R Cancer growth rate 0.18 (1/time) [10-1, 2] [12]

b Cancer cell capacity 10-9 (1/cells) 10-9 [12]

a Cancer clearance term 1 (1/cells) [10-2, 102] [12]

g Half-saturation, for cancer 
clearance 105 (cells) 105 [12]
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Both the two therapies can have the ability to clear the tumour 
at the same time at a different level

3. Gene therapy clears the tumour combined with effector cells 
E(t)

4. Radiation γ supply directly to the tumour site such that it kills 
tumour cells T(t) only

Parameters

Positivity and bounded-ness

Since the right-hand side of the system (3) is completely 
continuous and locally Lipschitzian on C, the solution  (E(t), 
T(t)) of the model with initial conditions E(0) ≥ 0, T(0) ≥ 0 
exists and is unique on (ζ, 0), where 0   ζ ∞< ≤ ±  [18]. From 
system with initial conditions E(0) ≥ 0, T(0) ≥ 0, we have from 
the second equation of the system.

( )1   
  

dT aEr bT dt
T g T

γ
 

= − − − + 

( ) ( )
( )

0

1   
  0 0

t aEr bT dt
g TT t T e

γ
 

− − − + ∫
⇒ = ≥

Again

1  pEdE cT dE u dt
E f

 
= + − + + 

( )
( )

0

1   
  

1  0    

t
aEr bT dt

g T pEdE cT e dE u dt
E f

γ
 

− − − + 
 ∫ ⇒ = + − + +
  

Since, 

0c > , ( )
( )

0

1   
  0 0

t
aEr bT dt

g TT e
γ

 
− − − + ∫

≥ , 1 0u >

Therefore, we can drop these non-negative quantities, hence we 
get

pEdE dE dt
E f

 
= − + 

 dE p d dt
E E f

 
⇒ = − + 

( ) ( ) 0    0

t
p d dt

E fE t E e
 

− + ∫
⇒ =

≥ 0

Hence, all the solution of the system with initial conditions E(0) 
≥ 0 and T(0) ≥ 0 exists in the interval (0,1) and E (t) ≥ 0 and 
T(t) ≥ 0 for all t ≥ 0

From the second equation of system, it follows that

( ) 1dT rT bT
dt

≤ −

From the standard Kamke comparison theory [19], we get

( )
 

1lim sup  
t

T t
b→∞

≤

Now, from the first equation of the system (3), it follows that

1    
  

dE pEcT dE u
dt E f

= + − +
+

1    
  s
pEcT dE u

E f
≤ + − +

+

[Since T (t) bounded, Let sup T(t)=Ts

Taking, cTs + u1=K

[By assumption and parameter values this is constant]

Hence, 

  dE pE
dt E f

κ≤ +
+

( ) ( ) ( )
( )0

0   
  

t pE s
E t E ds

E s f
κ

  ⇒ ≤ + + +  
∫

The generalised Gronwall Lemma [20] gives E (t)<M1 where M1 
is uniformly bounded.

Therefore, T (t) of the system subject to initial conditions E (0) 
≥ 0, T (0) ≥ 0 is bounded but E (t) may be bounded under some 
conditions among parameters and the bound of T (t) for t>0.

Local stability analysis at equilibrium points 

In this section, we will study the existence and stability analysis 
of the system (3) at various equilibrium points. The equilibrium 
points of the system (3) are

1. Cancer-free equilibrium ( )* * *
1 1 1, P E T  and ( )* * *

2 2 1 , P E T

Where, 
* *
2 2*

1 2
A B

E
d

+
=    

* *
2 2*

2 2
A B

E
d

−
=   and *

1 0T =

*
2 1A p u df= + −   ( )2*

2 1 14B p u df u df= + − +

2. Cancer infected equilibrium ( )* * *
3 3 2 , P E T , ( )* * *

4 4 2, P E T , 
( )* * *

5 5 3,  P E T and ( )* * *
6 6 3 , P E T

Where,   
* *
3 3*

3 4
A B

E
rbd
+

=     

* *
3 3*

4 4
A B

E
rbd
−

=  and 
* *
1 1*

2 2
A B

T
rb

+
=

( ) ( ) ( )* * 2
1 11 ,   ( 1 ) 4A r gb B r gb rb aE g rgγ γ γ= − − = − − − + −

( ) ( )* * *
3 1 1 1 2A A B c p u df= + + + − ;

( ) ( ) ( ){ }* * 2 * *
1 1 1 1 1 1{ 2 } 8 2A B c rd p u df rbdf A B c u rb= + + + − + + +

( ) ( )* * *
4 1 1 1 2A A B c rb p u df= − + + −

( ) ( ) ( ){ }* * * 2 * *
4 1 1 1 1 1 1{ 2 } 8 2B A B c rd p u df rbdf A B c u rb= − + + − + − +

For stability analysis linearizing the system (3) to obtain Jacobian 
as follows:

J*
( )

( )
( )

2

21 2

pfd c
E f
aT agEr bT

g T g T
γ

 − + + =  
− − − − 

+ +  
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Local stability at each equilibrium point is checked by using 
Lemma 2.1 and the parameter Table 1 and has the following 
results.

The coexistence of both effector and tumour cell: With using 
the value of the parameters from Table 1 and the radiation dose 
γ=0.1 the systems has two biologically feasible equilibrium 
points out of which ( )*

1 37.4832, 0P are cancer-free shows saddle 
point behaviour with the unstable result and cancer infected 

equilibrium point P3
* (8401.37, 5018.33) shows inward spiral 

behaviour with locally asymptotically stable nature. Hence, 
at this point, both effector and tumour compete with each 
other in presence of radiogenic therapy. That means both cells 
population goes to damped oscillation behaviour about zero 
instead of asymptotes to zero (Figure 1a).

The radiogenic therapy may cut out: Employing the values 
presented in Table 1 as well as radiation dose γ=0.195
number of stationary points is only one ( )*

1 37.4832, 0P , which 
is cancer-free. This stationary point is asymptotically stable 
and the system shows nodal sink nature at this equilibrium. 
That means the effector cell population incorporates with the 

treatment given can suppress the tumour growth to zero with 
time increase (see Figure 1b). However, because of the higher 
dose of radiation, which gives a negative impact on effector 
cells, the effector cell population also goes down rapidly with 
the increase of time. Which is not the aim of the treatment and 
the treatment fails in this case.

The radiogenic therapy succeeds: Through the values presented 
in Table 1 as well as the immuno-therapy dose u1 =53, cancer 
clearance term a=5 and the radiation dose  γ=0.1, there exists 
only one equilibrium point ( )*

1 1770, 0P . That means, at this, the 
body may be in a healthy stage as because the system behaves 
asymptotically stable with nodal sink nature. The tumour cells 
asymptote to zero rather than oscillating about zero (Figure 1c) 
i.e., after a sufficient amount of time and a suitable amount 
of radiation and immuno-therapy dose the tumour cells are 
vanished by the use of treatment. This shows the combined 
effect of radiogenic therapy.

The initial values used in these simulations are  E(0)=T(0)=1000.

GLOBAL STABILITY

Linear stability analysis shows how a system behaves in a 
neighbourhood of an equilibrium point.  It does not, however, 
describe anything about what happens further away from 
equilibrium. In this section, we will show the point ( )*

1 1770,  0P  
is globally stable by constructing a Lyapunov function, which 
described the total eradication of the tumour.

Define a Lyapunov functional of the model as

( ) ( )2 2
1 1W E E T T= − + −

Differentiating on both sides with respect to time, we get

( ) ( )1 12 2W E E E T T T= − + −  

( )( )1 12 2        0EE TT Since E E E and T≤ + − ≤ = 

( )12 2 1pE aETE cT dE u T rT bT T
E f g T

γ
   

= + − + + − − −  + +   

( )12 2 1pE aETE cT dE u T rT bT T
E f g T

γ
   

= + − + + − − −  + +   

 TX AX=

Where

[ ]
( ) ( )

122 2
,       ;  

2 1 2

up d c
E f E

X E T A
aEc r bT

g T
γ

 − + − − + = =
 − − − + + + 

Here,

( ) 1
11

22 det 2 upA d
E f E
−

= + −
+

1(0         )p dfT and E E
b d

≤ ≤ < ′−
<

( )9 0.0599       1.6667 10E′= = ×

0>
And

  

a)

b)

c)

Fig. 1. Radiogenic therapy; (a) Radiation dose γ=0.1; (b) Radiation dose 
γ=0.195; (c) Immunotherapy term u1 =53, cancer clearance term a=5 and 

Radiation dose γ=0.1,

, the 
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( ) 2122 2det 2 2 2 2up EaA d r rbT c
E f E g T

γ
  −

= + − − + + + −  + +  

( ) 21 222 1 2 2 2 2
1

a p dfup d r rb c
E f E b d g

b

γ

 
 − −  > + − − + + + −  +     +    

′ ′

1.0096=
> 0 Where 

2 4

2

c c dfcp df p df
b b bE

d

   + − + + − +   
  =′ 

∴W <0, because the matrix A is positive definite.

The equilibrium point *
1P  satisfies all the conditions of 

Lyapunov stability theorem i.e. tumour-free equilibrium point 
*

1P  to be globally asymptotically stable [Lemma 2.3]. Hence, 
the equilibrium point ( )*

1P 1770,  0  is globally asymptotically 

stable on the domain ( )2

0R+  (where ( )2

0R+  is denote the non-
negative octant of R2) if the Lyapunov W <0 at this point  
(Figures 2 and 3).

  Fig. 2. Time series solution for various initial values for E(t) and T(t)

Fig. 3. This figure depicts the point P*
1 (1770,0)  is globally asymptotically 

stable

CONCLUSION

Cancer research has undergone radical changes in the last 
few decades. The main subject of this paper to investigate the 
effectiveness of radiogenic therapy. Here, we have observed 
that if we treat tumour site with sufficient amount of immuno-
therapy drugs and radiotherapy dose under some circumstances, 
cancer may be eradicated from the body. We further investigated 
for the total eradication of cancer by checking global stability at 
tumour free equilibrium. From our observation, the trajectory 
of the system goes towards the point P*

1 (1770,0) for various 
initial conditions (Figure 2) which described the global stability 
of the system (Figure 3). Hence, we may conclude that cancer 
may eradicate from the body with the use of radiogenic therapy 
by choosing a suitable amount of drug dose. This research gives 
small amounts of help to the oncologists in practice the cancer 
treatment. In future, we will analyse the model with pulsed 
radiation and optimal continuous radiation therapy using delay 
differential equation for a better realistic scenario.
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