Fabrication of PLGA nanoparticles using combination of PCL PVA PEG copolymer as surfactant: In vitro characterization and cytotoxicity study

Shashi Ranjan¹, Subas Chandra Dinda², Anurag Verma¹

¹ Department of Pharmaceutics, College of Pharmacy, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh, India ² The Neotia University, School of Pharmacy, Sarisa, West Bengal, India

ABSTRAC

Background: The present study aimed to fabricate Poly Lactic acid Co-Glycolic Acid (PLGA) nanoparticles loaded with resveratrol using a novel graft copolymer surfactant named soluplus®.

Materials and Methods: The PLGA nanoparticles were prepared in the present study using polyvinyl caprolactam, polyvinyl acetate polyethylene glycol amphiphilic graft copolymer named soluplus® as surfactant through double emulsification and single emulsification-solvent evaporation method. The formulations were prepared successfully to encapsulate the drug resveratrol, and then evaluated for their particle size, polydispersity index, zeta potential, drug loading and the degree of entrapment of the drug. Using a scanning electron microscope, the nanoparticles' morphology was investigated. In vitro drug release was evaluated, and the release pattern was evaluated using mathematical pharmacokinetic modelling. A comparative cytotoxicity study between free drug and prepared nanoparticles using MTT assay was carried out for cell viability evaluation. Uptake and internalization of nanoparticles were also studied using confocal fluorescence microscopy

Results and Discussion: The outcomes showed that PLGA nanoparticles may be successfully fabricated utilising soluplus as a polymer surfactant. The drug, polymer and the all the excipients were found to be compatible and did not indicate any interaction. The results also indicated the prepared nanoparticles Surfactants-2 (SF2) as suitable resveratrol delivery vehicle in terms of the compliant particle size (344.6 nm ± 6.63 nm), polydispersity index (0.962), zeta potential (-18.5% ± 1.21%), drug loading (18.94% ± 0.27%), the entrapment efficiency (39.62% ± 0.17%) and drug release (75.13% ± 0.17%). The shape and surface morphology of the formulated nanoparticles were found to be spherical and smooth. Cytotoxicity study also demonstrated significant reduction of cell viability by the nanoparticle compared to free resveratrol. The highest cytotoxicity of SF2 against Michigan Cancer Foundation-7 (MCF7) cell was found in 2000 nM concentration with 3.03% ± 0.05% of cell viability. It was found that the percentage of growth inhibition was increasing with increasing concentration of SF2 and Inhibitory Concentration (IC)50 value of this assay was 108.94 µg/ml.

Conclusion: It has been found that the resveratrol loaded PLGA nanoparticles were successfully formulated and found to perform better in terms of efficacy and cytotoxicity.

Keywords: resveratrol, PLGA, nanoparticles, soluplus®, anticancer cytotoxicity

Address for correspondence:

Shashi Ranjan,

Department of Pharmaceutics, College of Pharmacy, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh, India Email: ranjanshashi20@gmail.com

Word count: 7181 Tables: 05 Figures: 08 References: 63

Received: 10 April, 2024, Manuscript No. OAR-24-131948 Editor Assigned: 12 April, 2024, Pre-QC No. OAR-24-131948(PQ) Reviewed: 25 April, 2024, QC No. OAR-24-131948(Q) Revised: 02 May, 2024, Manuscript No. OAR-24-131948(R) Published: 10 May, 2024, Invoice No. J-131948

INTRODUCTION

In biomedical research, particularly for applications involving drug delivery, Polymeric Nanoparticles (PNPs) preparation techniques are of great interest. PNPs have several goals in drug delivery applications, including controlled drug release, biocompatibility with tissues and cells, higher intracellular uptake than free drugs, improved stability of active ingredients, and the ability to target particular tissues [1-3]. The PNPs size is an important consideration in the design of these systems; they should be large enough to slow down incorporation into blood vessels while still being small enough to avoid immune system destruction [4]. To satisfy each of these requirements, the PNP preparation methods should be examined and modified for each active substance. Additionally, in order to produce reproducible large batches, it is crucial to study the PNP preparation methods [5, 6]. The most popular polymer used in the production of PNP is Poly Lactic acid Co-Glycolic Acid (PLGA). Because of its biodegradability and low systemic toxicity, PLGA is successfully used in the research of drug delivery systems and has received FDA approval for use in medical applications [7-10].

Several techniques, including emulsification evaporation, nanoprecipitation or solvent displacement, solvent diffusion, and phase-inversion, can be used to formulate PNP using PLGA into, with sizes ranging from 10 nm to 1000 nm [11]. When encapsulating hydrophobic compounds, two of the most commonly used techniques are the emulsification-solvent evaporation technique and the nanoprecipitation technique [12]. Solution for the efficient formulation of hydrophobic drugs has been emerged with the use of nano size polymeric particles. In addition to their rapid dissolution rate, these systems are highly regarded for their high bioavailability after oral administration, because of enhanced absorption of the medication. Their capacity to solve issues related to poorly lipid- and water-soluble medicines is unique because to their simplicity and advantages over alternative delivery systems. Nanoscale drug particles were produced as colloidal dispersions using an appropriate technique and stabilizer [13-16]. In breast cancer models, resveratrol is shown to suppress the expression of cyclin D1 and E as well as cyclin-dependent kinases 2 and 4 along with Insulin-like Growth Factor-1 (IGF-1) by minimizing the expression of cell cycle regulatory proteins [17-20]. As a result of the low solubility and instability of resveratrol, its activity is limited, as it is not readily bioavailable and is readily metabolized [21-24]. A very scant amount of literature exists on the preparation of formulations of

issues. In fact, targeting natural bioactive is one of the greatest was sonicated for 45 minutes, and then the organic solvents were challenges [25-27]. It was the purpose of our study to explore the removed by stirring it with a magnetic stirrer overnight. The larger use of an amphiphilic polymeric, soluplus, in the stabilization particles that developed in the double emulsion were disposed of of nano formulations which were designed and evaluated to be after five minutes of centrifugation at 5,000 rpm. The supernatant effective for the administration of resveratrol, a poorly soluble was centrifuged once more for 30 minutes at 7,000 rpm. It was model drug used in this study. Especially manufactured by BASF then rinsed three times with distilled water and freeze-dried to for formulating poorly soluble drugs, Soluplus^{*} is a polyvinyl produce nanoparticles. The code designation assigned to this initial caprolactam-polyvinyl acetate-polyethylene glycol amphiphilic formulation was Surfactants-1 (SF1). It was made using Soluplus* graft copolymer. Since it is bifunctional, it is expected to function in primary and secondary emulsions at the same concentrations as an effective matrix for dissolving drugs in water. In the (1.5% w/v and 0.5% w/v), but in secondary emulsions, the volume fourth generation of solid solutions, soluplus^{*} is a new polymer was increased from 5 ml to 50 ml [28, 29]. specifically designed to enhance dissolution. Drugs that are poorly soluble can be made more soluble and bioavailable by soluplus[®]. The objective of this study to determine whether soluplus[®] can be used to synthesize nanoparticles as a surfactant to enhance their A quantity of 2.5 ml of dichloromethane was used to dissolve 10 wetting characteristics and decrease agglomeration, as well as to mg of resveratrol. The drug to polymer ratio is 1:2 with the addition evaluate the drug loading and entrapment efficiency, particle size, of 20 mg of polymer. A 10 minute to 15 minute homogenization polydispersity index, zeta potential and surface morphology of the at 15,000 rpm after dropwise adding the drug-polymer solution prepared drug loaded nanoparticles.

MATERIAL AND METHOD

Drug and chemicals

The PLGA (85:15, M_w 200,000) was purchased from Sigma Aldrich, as it is a commercially available product. A gift sample of Resveratrol was provided by Zorion Drugs and Herbs Pvt. Ltd, Ambala. As for soluplus®, a graft co-polymer of polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol, it was provided as gift sample from BASF (USA). For the purpose analytical grade Characterization of PLGA nanoparticles chemicals were used.

Drug excipient compatibility

It is possible for the drug degradation to occur as a result of the The following formula was used to determine the yield, or interaction between the drug and the excipient. Compatibility of the excipients is crucial for the formation of stable and efficient DESE and SESE procedures [14]: dosage forms. With FTIR spectroscopy, potential medication interactions were investigated.

FTIR (Fourier-Transform Infrared spectroscopy)

The FTIR spectra for a physical blend of pure drug and excipients was obtained by using FTIR spectrophotometer (Bruker Instrument, Germany) and analysed the obtained IR spectra to ascertain the interaction between the drug and the prepared lyophilized formulation by comparing their FTIR spectra at wavelengths between 400 cm⁻¹ and 4000 cm⁻¹.

Formulation of nanoparticles

Soluplus® as a stabilizer in Double Emulsi ication and Solvent Evaporation (DESE) method:

Resveratrol-loaded PLGA polymer-based nanoparticles were produced by employing soluplus° as a surfactant in different amounts and concentrations. 2.5 milliliters of dichloromethane were used to dissolve 10 mg of resveratrol. In the medication and dichloromethane solution, about 20 mg of polymers PLGA were dissolved (drug-polymer ratio: 1:2). 2.5 ml of 1.5% w/v Soluplus® was homogenized dropwise for 20 minute-30 minute at 3,000 rpm in order to produce a rich, creamy emulsion. The creamy Using solid-state lasers, a Malvern Nano ZS90 outfitted foam consistency of the main emulsion was homogenised with 25

resveratrol that will increase its efficacy and overcome its related rpm to create a secondary emulsion. The secondary emulsion

Single Emulsi ication and Solvent Evaporation (SESE) using soluplus® as stabilizer:

to 50 cc, 2.5% w/v soluplus® resulted in an emulsion. The development of stable emulsions is indicated by creamy emulsions. Dichloromethane was extracted using a 45 minute sonication and 12 hours-14 hours of gentle magnetic stirring. The solution was repeatedly rinsed three times with distilled water after centrifuging it for 30 minutes at 15,000 rpm to remove the surfactant, and the nanoparticles were freeze-dried. Surfactants-3 (SF3) was the code designation for the formulation. Furthermore, utilising 1.5% w/v soluplus[®], 50 ml of formulation Surfactants-4 (SF4) was made [30, 31].

Percentage yield, drug loading and entrapment efficiency:

percentage, of nanoparticle formulations made using both the

$$Percentage Yield = \frac{Weight (nanoparticles obtained)}{Weight (drug and polymer used for nanoparticles preparation)} x100$$

The entrapment and loading efficiency of the nanoparticles were measured using a centrifuge tube loaded with dichloromethane and 2 mg of Resveratrol-laden nanoparticles. In a shaker incubator, the mixture was continuously shaken for three to four hours at 37°C. Using centrifugation, the continuous and dispersed phases were separated. Using a UV-Visible spectrophotometer set to 475 nm in wavelength, the concentration of the collected supernatant was evaluated in order to ascertain the drug release. We employed the following formulas to get the percentages of drug loading efficiency and entrapment efficiency [30, 31]:

Drug Amount present in nanoparticles Drug loading efficiency (%) =r100 Drug Amount loaded nanoparticles

Drug Amount present in nanoparticles x100 Entraapment efficiency (%) =Intial Drug Amount added

Particle size and zeta potential:

with a Dynamic Light Scattering (DLS) system was used to ml of 0.5% w/v Soluplus® for 20 minutes-30 minutes at 18,000 measure the sizes and distributions of nanoparticles. Prior to

measurement, an appropriate quantity of desiccated nanoparticles qualitatively between 38 and 43. Fluorescein Isothiocyanate was dissolved in double-distilled water and subjected to a (FITC) labeled PLGA NPs were employed. Using fluorescence reasonable duration of sonication. Next, the size distribution of microscopy, the presence of NPs in breast cancer cells (MCF7) the homogeneous suspension, the polydispersity index, and the was investigated. In short, MCF-7 cells were seeded with average hydrodynamic particle size were computed. The Malvern Dulbecco's Modified Eagle's Medium (DMEM) onto a 24-well NANO ZS90 was also used to detect Zeta Potential (ZP). ZP plate, with 10,000 cells per well, following pre-treatment. DAPI, provides information on the particle surface charge and long-term or 4', 6-diamidino-2-phenylindole, was employed to label the cell stability of dried nanoparticles from every formulation. Before nucleus. To summarise, the cells were trypsinized, then washed measurement, these nanoparticles were suspended in double- with PBS and fixed for 10 minutes with 3.7% formaldehyde. The distilled water and subjected to a reasonable amount of sonication. cells were washed, then treated for five minutes with 0.2% Triton

Scanning Electron Microscopy (SEM):

shape and surface morphology were investigated (Hitachi SEM, 43]. S-3600 N). To obtain an adequate sample of nanoparticles, a sample was placed onto metal stubs using double-sided carbon tape and broken with a razor blade. After the samples were goldsputter coated, their morphology was investigated in an argon Drug-excipient compatibility studies atmosphere using a secondary electron emissive SEM.

In vitro drug release study:

To investigate drug release from formed nanoparticles, a phosphate buffer with a pH of 7.4 was utilised. Eppendorf tubes containing 5 mg of freeze-dried nanoparticles were filled with 2 ml of phosphate buffer and incubated at 37°C for drug release investigations. Following 0, 1 hour, 3 hours, 6 hours, 9 hours, 12 hours, 24 hours, 36 hours, and 48 hours of shaking at 120 rotations per minute, the samples were centrifuged. After that, 0.5 ml of the supernatant was taken and its concentrations were evaluated using a UV-visible spectrophotometer set to 475 nm in order to determine the drug release study's rate. The buffer with the same pH was used in place of the withdrawal volume.

In vitro drug release kinetic study:

It is crucial to investigate the method by which medications are released from nanoparticles in order to comprehend their pharmacokinetic properties. Based on kinetic equations, such as zero-order, first-order, etc., in vitro drug release data were Nanoparticle preparation analysed, and graphs were created using these equations. based on charts that are linear. To find R² and k, a regression analysis was conducted [32, 33].

Cytotoxicity assay using MCF7 cells:

Formazan was used to measure the cytotoxicity of blank and resveratrol-encapsulated nanoparticles on MCF-7 breast cancer cells by reducing 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT, Sigma) [34-37]. In short, MCF7 (mice breast cancer cell line) cells were sown in a 5000/well flatbottom 96-well culture plate. After that, it was incubated for 24 hours with various PLGA-NP concentrations (0 nm-2000 nm Resveratrol equivalent) and drug free. After the medium was withdrawn, the cells were incubated with MTT solution (5 mg/ ml in PBS) at 370°C. Untreated cells were used as the control group. After three hours of incubation, the supernatant was collected, and the cells were then treated with 100 µL of DMSO to dissolve the dark blue formazan crystals. The absorbance was then measured at 570 nm using an ELISA reader.

Cellular uptake of nanoparticles by confocal fluorescence microscopy:

The MCF7 cells' absorption of PLGA-NPs was evaluated

X-100, and lastly for five minutes with an appropriate volume of DAPI labelling solution (1:5000 DAPI in PBS). Following PBS Using a scanning electron microscope, the formed nanoparticles' washing, fluorescent microscopy was used to analyse the cells [38-

RESULTS

The principal and distinguishing peaks of the medication and the excipients were preserved, as we have seen from the separate FTIR spectra of PLGA, Resveratrol, and Soluplus®, as well as by comparing them to the FTIR spectrum obtained for the physical mixture of PLGA-resveratrol-soluplus® (Figure 1). Consequently, the excipients did not exhibit any incompatibility, indicating that they were likewise totally stable. The FTIR spectra of resveratrol shows a significant olefinic band at 965 cm⁻¹ and 3293 cm⁻¹, which is caused by OH stretching vibration. The band at 1383 cm⁻¹ and 1586 cm⁻¹ shows that resveratrol demonstrates CO stretching. In the FTIR examination of the PLGA polymer, peaks at wave numbers 692 cm⁻¹, 1008 cm⁻¹, 1370 cm⁻¹, 1627 cm⁻¹, 1960 cm⁻¹, and 2257 cm⁻¹ were plainly apparent. Furthermore, the peaks in both the PLGA and nanoparticles at 2441 cm⁻¹ and 3406 cm⁻¹ verify that PLGA is present in the formulation. The OH stretching band shifts to a higher wave number due to the hydrogen bonding between the hydroxyl groups in resveratrol and the carbonyl groups in PLGA.

In this work, resveratrol-containing nanoparticles were produced using two different methods. Table 1 shows two evaporation methods: Single Emulsion Solvent Evaporation (SESE) and Double Emulsion Solvent Evaporation (DESE). It was discovered that formulations with the necessary size, encapsulation, and surface qualities could be created using either of the approaches. The full emulsification of the organic and aqueous phases is the most important component of the emulsion process. PVA is a regularly used stabiliser, although several stabilisers are employed as well. In this investigation, Soluplus® was utilised in place of PVA. Table 2 demonstrates that both approaches provide enough particles, suggesting an improved formulation.

Characterization of nanoparticles Scanning Electron Microscopy (SEM) and particle size analysis

SEM pictures of NPs with spherical forms and smooth surfaces may be seen in figure 2 below. Table 2, demonstrates that the resveratrol-loaded particles were uniformly distributed and submicron in size under the experimental conditions based on their polydispersity index results.

Fig. 1. FTIR spectrum of resveratrol, plga, soluplus® and physical mixture

Tab. 1. Nanoparticles compositions (SF1-SF4) and percentage yield of	Formulation code		SF1	SF2	SF3	SF4
	Resveratrol (mg)		10	10	10	10
the hanoparticles	Polymer used		PLGA 85:15	PLGA 85:15	PLGA 85:15	PLGA 85:15
	Amount of polymer (mg)		20	20	20	20
	Method used		DESE	DESE	SESE	SESE
	Stabilizer soluplus [®] (% w/v) and volume (ml)	Primary	1.5 and 2.5	1.5 and 5	2.5 and 50	1.5 and 50
		Secondary	0.5 and 25	0.5 and 50		
	Percentage yield		73.52	73.78	72.78	74.87

Fig. 2. SEM images of prepared PLGA nanoparticles (A- SF2, B- SF3 and C- SF4)

The spherical nature of polymeric nanoparticles was demonstrated trolling the distribution of particle sizes is difficult [44, 45].

by SEM pictures. The lyophilized resveratrol-loaded polymeric nanoparticles in the optimised formulation had a cumulative percentage drug release of $75.13\% \pm 0.17\%$ after 48 hours, which was higher than that of the prior formulations. The efficacy, safety, and therapeutic effect of chemicals can be negatively impacted by a variety of circumstances, such as insufficient drug delivery to the intended tissues or unfavourable side effects including extreme toxicity in healthy tissues. When a medication is enclosed in nanocarriers with specific and foreseeable characteristics, the medication's bioavailability is increased and its adverse effects are decreased. Based on their physicochemical properties, the size distribution of particles within nanocarriers influences their propensity to collect in target tissues. Therefore, in order to create safe, stable, and effective nanocarriers, homogeneous (monodisperse) populations of nanocarriers of a particular size must be prepared. However, without considering the makeup of the nanocarriers and the type of solvents and cosolvents used to create them, con-

Polydispersity Index (PDI) and zeta potential (mV)

They need to be defined in order to guarantee that both in vitro and in vivo applications can be carried out on the polydispersity index, or PDI. An essential variable in characterising the particle size distribution is the Polydispersity Index (PDI). This index lacks a dimension and is scaled to only be seen in standards with large monodisperse distributions, which often have values less than 0.05. Because of its wide particle size distribution, an example with a particle size distribution greater than 0.7 is unlikely to be further improved. It is possible to identify size and PDI parameters (0.05-0.7) using a range of size distribution algorithms when the data falls between these two extreme values of PDI [46]. In terms of particle size, PDI, and zeta potential, the Surfactants-2 (SF2) formulation outperformed all other nanoformulations by a wide margin. To ascertain the surface charge of neutrally or positively charged nanoemulsion. Moreover, the kind encapsulated at the center can also be helpful.

Tab loa ing

nanoparticles loaded with resveratrol, Zeta Potential (ZP) was as- of binding that occurs between medications and nanoparticles as sessed. The zeta potential of nanoparticles influences both their well as the zeta potential of the latter two influence drug loading pharmacokinetics and biodistribution outside of the physiological efficiency and the rate at which pharmaceuticals can be reabsorbed milieu. Negatively charged nanoemulsions are easily absorbed by from nanoparticles. Determining whether the medicine or active the reticuloendothelial system and are excreted more quickly than component is adsorbing on the surface of the nanoparticles or is

. 2. Characteristics of resveratrol	Formulation Particle Size		Polydispersity	Zeta Potential	Drug Loading (%)	Entrapment Effi- ciency (%)
Soluplus [®] as surfactant	Code	(nm)	Index (PDI)	(mv)	(Mean ± SD)	
	SF1	568.7 ± 9.87	0.716	-23.2 ± 1.08	17.90% ± 0.16%	36.78% ± 0.16%
	SF2	344.6 ± 6.63	0.962	-18.5 ± 1.21	18.94% ± 0.27%	39.62% ± 0.17%
	SF3	526.2 ± 12.36	0.917	-18.4 ± 1.33	18.12% ± 0.13%	35.18% ± 0.14%
	SF4	571.3 ± 11.97	0.977	-16.8 ± 1.09	18.21% ± 0.26%	36.43% ± 0.21%

It has been shown that negatively charged nanoparticles are more delivery. Studies also show that nanoparticles' cationic charge, or slowly eliminated from the system and remain in the bloodstream negative zeta potential, increases their cytotoxicity (Figure 3). longer than positively charged nanoparticles following intravenous

even damaged as a result of the interaction between nanoparti- potential profiles for encasing hydrophobic medications like rescles and the membrane [47]. Additionally, it was discovered that veratrol. Considering all of the results, Soluplus[®] was shown to be the formulations had negative, demonstrating the stability of the a somewhat mediocre (in comparison to PVA) option when crepolymeric nanoparticles. When used as a surface-active agent, ating PLGA nanoparticles in this investigation (Figure 4 and 5).

The oppositely charged cell membrane may become unstable and Soluplus*-prepared PLGA nanoparticles show encouraging zeta

Fig. 4. The SF3 and SF4 particle size distribution curves

Fig. 5. SF1, SF2, SF3, and SF4's zeta potential

Entrapment efficiency and drug loading

biliser concentration were shown to be significantly influencing drug to polymer ratio than at a 1:3 ratio (Figure 6) [48].

both drug loading and entrapment efficiency, based on the values The percent entrapment efficiency and percentage drug loading of of these parameters. Metrics like drug-polymer ratio, homogenizathe formulations were observed to vary, with values ranging from tion rate, and stabiliser are important parameters that affect drug $17.90\% \pm 0.16\%$ to $18.94\% \pm 0.27\%$ and from $35.18\% \pm 0.14\%$ loading and entrapment effectiveness. Using PLGA polymer, it to 39.62% ± 0.17%, respectively. The drug polymer ratio and sta- was discovered that drug loading was seven times more at a 1:1

nanoformulations. SF2 proved to perform noticeably better than the other formulas (**p<0.01)

In vitro drug release and pharmacokinetic modeling of resveratrol loaded PLGA nanoparticles The in vitro drug release ranges for all formulations were determined to be $18.82\% \pm 0.14\%$ to $22.36\% \pm 0.23\%$ at one hour. The release was discovered to be between 40.27% \pm 0.11% and $47.97\% \pm 0.13\%$ at the third hour. The acquired data also demonstrates that, as opposed to a dramatic explosion of release dur-

ing the first three hours of the in vitro investigation, drug release

increases steadily after the third hour. This release pattern could be the result of PLGA degradation at first, followed by gradual diffusion up to 75.13% \pm 0.17% after 48 hours. In comparison to other formulations, formulation (SF2) had the maximum drug release of 75.13% \pm 0.17% at 48 hours. When the release kinetic pattern of these in vitro drug release data was examined, the R2 values indicated that there was zero order release kinetics after strong linearity in the Korsmeyer-Peppas plot (Figure 7 and Table 3).

Tab. 3. In vitro drug release data from PLGA nanoparticles		Cumulative percentage drug release (Mean ± SD)				
	Time (hours)	Surfactants-1 (SF1)	Surfactants-2 (SF2)	Surfactants-3 (SF3)	Surfactants-4 (SF4)	
	0	0	0	0	0	
	1	19.94% ± 0.09%	22.36% ± 0.23%	18.82% ± 0.14%	19.24% ± 0.15%	
	3	43.34% ± 0.06%	47.97% ± 0.13%	40.27% ± 0.11%	41.28% ± 0.19%	
	6	45.09% ± 0.1%	53.32% ± 0.08%	43.91% ± 0.15%	43.61% ± 0.11%	
	9	49.73% ± 0.09%	57.61% ± 0.1%	48.33% ± 0.13%	47.02% ± 0.08%	
	12	53.39% ± 0.16	59.75% ± 0.11%	50.96% ± 0.07%	50.13% ± 0.07%	
	24	58.56% ± 0.11%	64.75% ± 0.06%	55.41% ± 0.17%	53.2% ± 0.09%	
	36	64.65% ± 0.08%	70.51% ± 0.15%	60.44% ± 0.1%	57.35% ± 0.13%	
	48	68.94% ± 0.1%	75.13% ± 0.17%	64.09% ± 0.12%	61.02% ± 0.16%	

by the kinetic modelling of the in vitro drug release data, which lease along with a diffusion process. shows the release process based on the Korsmeyer-Peppas model. Table 4 below displays the various rate constants and release expo-Fickian diffusion, according to formulation SF2, as indicated by different kinetic models. the n value of 0.148. For the drug release from the polymeric en-

The drug release from the polymeric formulations is confirmed capsulated system, the above finding clearly implies zero order re-

The drug releases eventually. Its release mechanism also follows nents that were computed from drug release research data using

Fig. 7. Graph showing the cumulative percent drug released vs time profile

Tab. 4. In vitro drug	b. 4. In vitro drug lease data with dif- rent kinetic models	Zero Order Model	First Order Model	Higuchi Model	Hixon-Crowell Model	Korsmeyer-Peppas Model	
ferent kinetic models		R ² _z	R ² _F	R ² _H	R ² _{HC}	R ² _{KP}	n
	SF1	0.984 ± 0.0073	0.661 ± 0.0052	0.838 ± 0.0029	0.306 ± 0.0043	0.976 ± 0.0087	0.128 ± 0.0017
	SF2	0.984 ± 0.0075	0.598 ± 0.0087	0.793 ± 0.0082	0.288 ± 0.0077	0.965 ± 0.0076	0.119 ± 0.0028
	SF3	0.963 ± 0.0062	0.673 ± 0.0053	0.823 ± 0.0014	0.308 ± 0.0017	0.989 ± 0.0091	0.164 ± 0.0053
	SF4	0.984 ± 0.0021	0.672 ± 0.0061	0.803 ± 0.0014	0.302 ± 0.0014	0.987 ± 0.0096	0.168 ± 0.0052

Cytotoxicity evaluation using MTT assay

cell lines at various doses in order to determine the IC50 (50% well. The assay's IC50 value was 108 µg/ml. Using linear regrescomes of various SF2 concentrations. When SF2 was compared IC50 values for the PLGA nanoparticles and free resveratrol in impact on MCF7 cells in concentration ranges between 100 nM the IC50 values for PLGA nanoparticles and free resveratrol were and 2000 nM. At 2000 nM concentration, SF2 exhibited the 108.94 µg/mL and 231.52 µg/mL, respectively (Table 5). maximum cytotoxicity against MCF7 cells, maintaining 3.03% ±

0.05% of cell viability. It was discovered that as SF2 concentra-A cytotoxicity research was conducted using SF2 against MCF7 tion increased, the percentage of growth inhibition increased as growth inhibition) using the MTT test. Figure 8 presents the out- sion analysis in the Graph-Pad Prism software programme, the to control and free drug, the MTT assay revealed a substantial the MCF7 cells were also determined. The results indicate that

Tab. 5. EC ₅₀ values for the free resveratrol and the PLGA nanoparticles in	SI. No.	Composition/Product	EC _{so} (µg/mL)	
	1	Free resveratrol	231.52 μg/mL	
the MCF7 cells	2	PLGA nanoparticles (Resveratrol loaded)	108.94 μg/mL	

nanoparticles by the breast cancer cells (MCF7) nanoparticles were also evaluated by fluorescent imaging micros-To investigate whether Resveratrol-encapsulated NPs were in- copy (Figure 8). The results showed that FITC labelled PLGA ternalized into the breast cancer cell line MCF7, cellular uptake nanoparticles were internalized into the MCF7 cells effectively. of FITC labeled PPF-NPs were analyzed by fluorescent imaging

Fluorescent imaging microscopy: uptake of microscopy. The Uptake of FITC labeled FITC labeled PLGA

Fig. 8. Bioevaluation using cytotoxicity assessment of the PLGA nanoparticles A. Cytotoxicity as compared free drug B. Results of fluorescent imaging microscopy showing the internalization PLGA nanoparticles in control MCF7 cells and C. Results of fluorescent imaging microscopy showing the internalization PLGA nanoparticles into the MCF7 cells

DISCUSSION

based nanoparticle, is widely used to solve problems with drug linear, and zero order kinetics followed. The drug release exponent insolubility, plasma circulation, and plasma concentration of different medicinal and active therapeutic components [49]. In addi- plot, suggesting "Fickian diffusion" of the drug from the matrix tion to weakly soluble or lipophilic medications, these polymeric type nanoparticle formulation. In the end, the purpose of the nanoparticles can target genes found in cancer tissues. Because study was accomplished by developing a controlled release mechatumour cells share physiological traits such as leaky vasculature nism nanoparticulate drug delivery system for resveratrol using and lack of a lymphatic system, they favour an effect known as the Polylactic Acid (PLGA). The method used in this work allowed Enhanced Permeation and Retention (EPR) effect. Furthermore, for the rapid and reliable fabrication of a scaffold of nanoparticles because nanoparticles can enter cells and lessen P-glycoproteinmediated cell efflux, they can slow the development of multiple that produced PLGA base nanoparticles reported similar results, drug resistance. However, developing a targeted, attractive, and active delivery system that can increase drug internalization at it can be concluded that the formulation developed in this work the cancer site is a difficult task [50, 51]. Polymeric nanoparticlebased drug delivery techniques are one of the fastest-growing areas for anticancer drug delivery [58, 59]. This work aimed to design of nanotechnology. Numerous medications, including biologic and create a customised delivery system for resveratrol to improve macromolecules, hydrophilic and hydrophobic small medicines, vaccinations, and oral and inhalation uses, may be delivered via nanoparticles. Additionally, these particles are very stable, very carrier-competent, and capable of incorporating both hydrophilic the intravenous administration of Nanoparticles (NPs) will faciliand hydrophobic materials [52, 53]. In the current work, resveratrol-loaded polymeric nanoparticles were produced using the while safeguarding it from fast breakdown [59, 60]. To specifically double and single emulsion-solvent evaporation techniques. A stabiliser called soluplus" was employed. The synthesised polymeric thesised biodegradable target specific moiety were generated usnanoparticle formulations loaded with resveratrol were evaluated ing the Double Emulsion Solvent Evaporation (DESE) and Single for their physiochemical properties. Based on characterization, a formulation was selected as the best formulation. Using Scanning current investigation, Soluplus was used as a surfactant or poly-Electron Microscopy (SEM), the optimised formulation's morphological characteristics were further examined. The spherical nanoparticle were assessed: drug loading, entrapment efficiency, nature of polymeric nanostructures was demonstrated using SEM zeta-potential, and particle size. Since the nanoparticles made pictures. Compared to earlier formulations, the optimised for- with Soluplus as a stabiliser yielded the anticipated outcomes, mulation demonstrated a greater cumulative percentage drug re- Scanning Electron Microscopy (SEM) was used to analyse the

lease of lyophilized Resveratrol-loaded nanoparticles at 48 hours, $75.130\% \pm 0.17\%$. Based on in-vitro drug release kinetics studies, Polylactic-co-Glycolic Acid (PLGA), a biodegradable polymer- R² values in the Korsmeyer-Peppas plot were shown to be more (n value) was less than 0.5, according to the Korsmeyer-Peppas with a homogeneous, spherical morphology. Several investigations which were then published in the literature [54-57]. As a result, holds potential for use as a long-term cancer therapeutic treatment its absorption by breast cancer cells and address related concerns. This work develops a novel drug delivery strategy by emulsifying PLGA nanoparticles with resveratrol. The hypothesis posits that tate the sustained delivery of resveratrol to a particular tumour site deliver resveratrol to tumours, nanoparticles containing the syn-Emulsion Solvent Evaporation (SESE) procedures [61, 62]. In the meric stabiliser. The following characteristics of each synthesised

surface morphology. In order to investigate the in vitro cytotoxic- CONCLUSION ity effect of PLGA NPs, 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT, Sigma) was reduced to Forma- In this study, PLGA nanoparticles containing Resveratrol were zan using a breast cancer cell line, including MCF7 [63]. The produced using single and double emulsion-solvent evaporation potential cytotoxicity of synthesised blank PLGA-NPs was also techniques, with Soluplus' acting as a stabilising agent. The forexamined. These were employed as a control sample. On MCF7 cells, the in vitro cytotoxicity of free medicine and PLGA-PEG was also assessed. The findings demonstrated that PLGA-NPs exhibited more cytotoxicity than the drug in its unbound state. The cellular absorption of FITC-labelled PLGA-NPs was evaluated by fluorescence imaging microscopy to determine whether the Resveratrol-encapsulated NPs were internalised by the breast amount of medication than the other formulations. The findings cancer cell line MCF7. FITC-labeled PLGA-NPs had a significantly (p<0.05) higher absorption rate than the control. Fluorescence imaging microscopy results demonstrated the successful internalisation of FITC-labeled PLGA-NPs into MCF7 cells. In In the current study, PLGA nanoparticles containing resveratrol summary, the present study demonstrated the successful fabrication of PLGA nanoparticles containing resveratrol and the considerable enhancement of the drug's cytotoxicity and distribution by formulation. The investigation also demonstrated the potential surfactant efficacy of soluplus" in the synthesis of nanoparticles. However, there are many limitations to this work, one of which is the lack of an in vivo study to validate the in vitro findings. In addition, the MTT cytotoxicity experiment might have included a normal cell line to offer a contrast that would have bolstered the study's findings. Future studies could be carried out to produce more PLGA nanoparticles and evaluate them more thoroughly utilizing animal models.

mulation (SF2) was chosen as the best formulation based on its characterisation. Its morphological characteristics were examined with a Scanning Electron Microscope (SEM). SEM images revealed polymeric nanoparticles in the shape of spheres. Following a 48-hour testing period, the lyophilized polymeric nanoparticles of formulation SF2 loaded with Resveratrol released a greater of the pharmacokinetic modelling showed that the matrix type nanoparticle formulation's drug release exponent (n-value) was less than 0.5, suggesting a "Fickian diffusion" of the drug (SF2). were successfully generated and evaluated by the use of Soluplus® as a surfactant. The effectiveness of Soluplus® as a surfactant and drug-loaded nanoparticle delivery system with the right drug loading, shape, and particle size has been shown by this work. In conclusion, PLGA nanoparticles loaded with resveratrol are efficient and promising delivery systems for anticancer drugs.

CONFLICT OF INTEREST

Conflict of interest declared none.

- 1. Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Sci. 2010;327:167-170.
- REFERENCES 2. Long C, McAnally JR, Shelton JM, Mireault AA, Bassel-Duby R, Olson EN. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Sci. 2014;345:1184-1188.
 - 3. Xue W, Chen S, Yin H, Tammela T, Papagiannakopoulos T, et al. CRIS-PR-mediated direct mutation of cancer genes in the mouse liver. Nat. 2014.514.380-384
 - 4. Yin H, Xue W, Chen S, Bogorad RL, Benedetti E, et al. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol. 2014;32:551-553.
 - Murakami T, Sunada Y. Plasmid DNA gene therapy by electroporation: 5. principles and recent advances. Curr Gene Ther. 2011;11:447-456.
 - 6. Zolochevska O, Xia X, Williams BJ, Ramsay A, Li S, et al. Sonoporation delivery of interleukin-27 gene therapy efficiently reduces prostate tumor cell growth in vivo. Hum Gene Ther. 2011;22:1537-1550.
 - 7. Maggio I, Holkers M, Liu J, Janssen JM, Chen X, et al. Adenoviral vector delivery of RNA-guided CRISPR/Cas9 nuclease complexes induces targeted mutagenesis in a diverse array of human cells. Sci Rep. 2014:4:5105
 - 8. Ehrke-Schulz E, Schiwon M, Leitner T, Dávid S, Bergmann T, et al. CRIS-PR/Cas9 delivery with one single adenoviral vector devoid of all viral genes. Sci Rep. 2017;7:17113.
 - Cohen H, Levy RJ, Gao J, Fishbein I, Kousaev V, et al. Sustained delivery 9. and expression of DNA encapsulated in polymeric nanoparticles. Gene Ther. 2000;7:1896-1905.
 - 10. Acharya S, Sahoo SK. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv Drug Deliv Rev. 2011:63:170-183.
 - 11. Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, et al . PLGA-based nanoparticles: an overview of biomedical applications. J Control Release. 2012:161:505-522.
 - Ke F, Luu YK, Hadjiargyrou M, Liang D. Characterizing DNA condensation 12. and conformational changes in organic solvents. Plos One. 2010;5:13308.
 - Vance TM, Su J, Fontham ET, Koo SI, Chun OK. Dietary antioxidants and 13. prostate cancer: a review. Nutr Cancer. 2013;65:793-801
 - Eyol E, Tanriverdi Z, Karakus F, Yilmaz K, Unuvar S. Synergistic anti-prolif-14. erative effects of cucurbitacin i and irinotecan onhuman colorectal cancer cell lines. Clin Exp Pharmacol. 2016;6:1-6.
 - Yoo HS, Park TG. Folate-receptor-targeted delivery of doxorubicin nano-15. aggregates stabilized by doxorubicin-PEG-folate conjugate. J Control Release. 2004;100:247-256.
 - Sahin K, Cross B, Sahin N, Ciccone K, Suleiman S, et al. Lycopene in the 16. prevention of renal cell cancer in the TSC2 mutant Eker rat model. Arch Biochem Biophys. 2015;572:36-39.
 - 17. Trejo-Solís C, Pedraza-Chaverrí J, Torres-Ramos M, Jiménez-Farfán D, Cruz Salgado A, et al. Multiple molecular and cellular mechanisms of action of lycopene in cancer inhibition. Evid Based Complement Altern Med 2013; 1-17
 - 18. Teodoro AJ, Oliveira FL, Martins NB, Maia GD, Martucci RB, et al. Effect of lycopene on cell viability and cell cycle progression in human cancer cell lines. Cancer cell int. 2012;12:1-9.
 - Wang Z, Fan J, Wang J, Li Y, Xiao L, et al. Protective effect of lycopene 19. on high-fat diet-induced cognitive impairment in rats. Neurosci Lett 2016;627:185-191.
 - Alvi SS, Ansari IA, Khan I, Iqbal J, Khan MS. Potential role of lycopene in 20. targeting proprotein convertase subtilisin/kexin type-9 to combat hypercholesterolemia. Free Radic Biol Med. 2017;108:394-403.
 - Tvrdá E, Kováčik A, Tušimová E, Paál D, Mackovich A, et al. Antioxidant 21. efficiency of lycopene on oxidative stress-induced damage in bovine spermatozoa. J Anim Sci Biotechnol. 2016;7:1-3.
 - Yang PM, Wu ZZ, Zhang YQ, Wung BS. Lycopene inhibits ICAM-1 expres-22. sion and NF-kB activation by Nrf2-regulated cell redox state in human retinal pigment epithelial cells. Life Sci. 2016;155:94-101.
 - Lee LK, Foo KY. An appraisal of the therapeutic value of lycopene for 23. the chemoprevention of prostate cancer. Nutr Approach Food Res Int. 2013:54:1217-1228
 - Rock EM, Parker LA. Cannabinoids as potential treatment for chemother 24. apy-induced nausea and vomiting. Front Pharmacol. 2016;7:1-10.
 - Betancourt T, Brown B, Brannon-Peppas L. Doxorubicin-loaded PLGA 25. nanoparticles by nanoprecipitation: preparation, characterization and in vitro evaluation. 2007; 2.
 - Yadav K, Yadav D, Yadav M, Kumar S. Noscapine loaded PLGA nanopar 26. ticles prepared using oil-in-water emulsion solvent evaporation method. J Nanopharm Drug Deliv. 2016;3:97-105.
 - McCall RL, Sirianni RW. PLGA nanoparticles formed by single-or double 27. emulsion with vitamin E-TPGS. JOVE. 2013; 27.
 - Dian L, Yu E, Chen X, Wen X, Zhang Z, et al. Enhancing oral bioavailability 28. of quercetin using novel soluplus polymeric micelles. Nanoscale Res Let. 2014:9:1-11.
 - 29 Jog R, Kumar S, Shen J, Jugade N, Tan DC, et al. Formulation design and evaluation of amorphous ABT-102 nanoparticles. Int J Pharm 2016;498:153-169.
 - 30. Ling Y, Huang Y. Preparation and release efficiency of poly (lactic-co-glycolic) acid nanoparticles for drug loaded paclitaxel. In7th: APCMBE China. 2008:19:514-517.

- 31. Gupta A, Kaur CD, Saraf S, Saraf S. Formulation, characterization, and evaluation of ligand-conjugated biodegradable quercetin nanoparticles for active targeting. Artif Cells Nanomed Biotechnol. 2016;44:960-970.
- 32. Shen J, Burgess DJ. In vitro dissolution testing strategies for nanoparticulate drug delivery systems: recent developments and challenges. Drug Deliv Transl Res. 2013;3:409-415.
- D'Souza S. A review ofin vitrodrug release test methods for nano-sized 33. dosage forms. Adv Pharm. 2014;2014:1-2.
- 34. Ahmed S, Kaur K. Design, synthesis, and validation of an in vitro platform peptide-whole cell screening assay using MTT reagent. J Taibah Univ Sci. 2017:11:487-496.
- 35 Angius F, Floris A. Liposomes and MTT cell viability assay: an incompatible affair. Toxicol In Vitro. 2015;29:314-319.
- 36. Eren Y, Özata A. Determination of mutagenic and cytotoxic effects of Limonium globuliferum aqueous extracts by Allium, Ames, and MTT tests. Rev Bras Farmacogn. 2014;24:51-59.
- 37. Lupu AR, Popescu T. The noncellular reduction of MTT tetrazolium salt by TiO2 nanoparticles and its implications for cytotoxicity assays. Toxicol Vitro. 2013:27:1445-1450.
- 38 Chawla JS, Amiji MM. Biodegradable poly (¿-caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen. Int. J Pharm. 2002;249:127-138.
- 39. Chawla JS, Amiji MM. Cellular uptake and concentrations of tamoxifen upon administration in poly (ɛ-caprolactone) nanoparticles. Aaps Pharmsci. 2003:5:28-34
- Esmaeili F, Ghahremani MH, Ostad SN, Atyabi F, Seyedabadi M, et al. 40. Folate-receptor-targeted delivery of docetaxel nanoparticles prepared by PLGA-PEG-folate conjugate. J Drug Target. 2008;16:415-423
- 41. Kapp T, Francke P, Gust R. Investigations on Surface Modified Dendrimers: Enzymatic Hydrolysis and Uptake into MCF-7 Breast Cancer Cells. Chem Enabling Drug Discov. 2008;3:635-641.
- Sahoo SK, Labhasetwar V. Enhanced antiproliferative activity of transfer-42. rin-conjugated paclitaxel-loaded nanoparticles is mediated via sustained intracellular drug retention. Mol Pharm. 2005;2:373-383
- 43. Yi Y, Kim JH, Kang HW, Oh HS, Kim SW, et al . A polymeric nanoparticle consisting of mPEG-PLA-Toco and PLMA-COONa as a drug carrier: improvements in cellular uptake and biodistribution. Pharm Res. 2005:22:200-208.
- MR M, Danaei M, Javanmard R, Raji M,et al . Nanoscale Lipidic Carrier 44. Systems: Importance of Preparation Method and Solvents. Glob J Nanomed. 2017;2:1-4.
- Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal formula-45. tions in clinical use: an updated review. Pceutics. 2017;9:12.
- Xu R. Progress in nanoparticles characterization: Sizing and zeta potential 46 measurement. Particuology. 2008;6:112-115.
- Honary S, Zahir F. Effect of process factors on the properties of doxycy-47 cline nanovesicles. Trop J Pharm Res. 2012;11:169-175.
- Maji R, Dey NS, Satapathy BS, Mukherjee B, Mondal S. Preparation and 48 characterization of Tamoxifen citrate loaded nanoparticles for breast cancer therapy. Int J Nanomed. 2014;25:3107-3118.
- 49. Alvi M, Yaqoob A, Rehman K, Shoaib SM, Akash MS. PLGA-based nanoparticles for the treatment of cancer: current strategies and perspectives. AAPS Open. 2022;8:12.
- 50. Rezvantalab S, Drude NI, Moraveji MK, Güvener N, Koons EK,et al PLGA-based nanoparticles in cancer treatment. Front. pharmacol. 2018;9:1260.
- 51. Cappellano G, Comi C, Chiocchetti A, Dianzani U. Exploiting PLGA-based biocompatible nanoparticles for next-generation tolerogenic vaccines against autoimmune disease. Int J Mol Sci. 2019;20:204.
- Zielińska A, Carreiró F, Oliveira AM, Neves A, Pires B, et al. Polymeric 52. nanoparticles: production, characterization, toxicology and ecotoxicology. Mol. 2020;25:3731.
- 53. Singh R, Lillard Jr JW. Nanoparticle-based targeted drug delivery. Exp Mol Pathol. 2009;86:215-223.
- Tabatabaei Mirakabad FS, Nejati-Koshki K, Akbarzadeh A, Yamchi MR, et al. PLGA-based nanoparticles as cancer drug delivery systems. Asian Pac J Cancer Prev. 2014;15:517-535.
- 55. Gu P, Wusiman A, Wang S, Zhang Y, Liu Z, et al. Polyethyleniminecoated PLGA nanoparticles-encapsulated Angelica sinensis polysaccharide as an adjuvant to enhance immune responses. Carbohydr Polym. 2019;223:115-128.
- 56. Maksimenko O, Malinovskaya J, Shipulo E, Osipova N, Razzhivina V, et al. Doxorubicin-loaded PLGA nanoparticles for the chemotherapy of glioblastoma: Towards the pharmaceutical development. Int J Pharm. 2019;572:118733.
- 57. Todaro B, Moscardini A, Luin S. Pioglitazone-loaded PLGA nanoparticles: towards the most reliable synthesis method. Int J Mol Sci. 2022;23:1-20.
- 58 Sun L, Xu H, Xu JH, Wang SN, Wang J W,et al. Enhanced antitumor efficacy of curcumin-loaded PLGA nanoparticles coated with unique fungal hydrophobin. AAPS Pharm Sci Tech. 2020;21:1.
- 59. Andima M, Costabile G, Isert L, Ndakala AJ, Derese S, et al. Evaluation of β-Sitosterol loaded PLGA and PEG-PLA nanoparticles for effective treatment of breast cancer: Preparation, physicochemical characterization, and antitumor activity. Pceutics. 2018;10:232
- 60. Alshetaili AS. Gefitinib loaded PLGA and chitosan coated PLGA nanoparticles with magnified cytotoxicity against A549 lung cancer cell lines. Saudi J Biol Sci. 2021:28:5065-5073.

61. 62.	Ghasemian E, Vatanara A, Rouholamini Najafabadi A, Rouini MR, Gilani K, et al. Preparation, characterization and optimization of sildenafil citrate loaded PLGA nanoparticles by statistical factorial design. DARU J Pharm Sci. 2013;21:1-10. Nabi-Meibodi M, Vatanara A, Najafabadi AR, Rouini MR, Ramezani V, et al. The effective encapsulation of a hydrophobic lipid-insoluble drug in	63.	solid lipid nanoparticles using a modified double emulsion solvent evapo- ration method. Colloids Surf B Biointerfaces. 2013;112:408-414. Kumar P, Nagarajan A, Uchil PD. Analysis of cell viability by the MTT as- say. Cold Spring Harb Protoc. 2018.