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AB
ST

RA
CT Protein-protein interaction networks are important tools for understanding 

the complex nature of biological processes and diseases, particularly cancer. 
However, the large size and complexity of these networks make it difficult to 
identify the most critical nodes that play important roles and act as critical 
regulators or mediators of biological processes in the networks. Identifying 
these key nodes within protein-protein interaction networks across different 
cancer types is crucial for elucidating the underlying molecular mechanisms 
and identifying potential therapeutic targets. Therefore, this study aims to 
analyse the significance of zone 1 in the human protein interaction network 
using the graph theory tool to identify the potential most important nodes 
across various cancer types.
Key words: protein-protein interaction networks; modelling; intersection 
cancer networks

INTRODUCTION

In recent years, graph theory analysis has emerged as a powerful 
tool for unravelling the structural properties and functional 
significance of protein-protein interaction networks (PPIs). 
By representing proteins as nodes and their interactions as 
edges, graph theory enables a comprehensive exploration of the 
network's topological features and facilitates the identification of 
key nodes that govern critical biological processes. This approach 
has been applied to various cancer types, including breast cancer, 
lung cancer and glioblastoma [1-3].

Several studies have successfully utilized graph theory analysis to 
identify key nodes in PPIs associated with specific cancer types. 
For instance, Fang E., et al., applied graph theory to analyse a 
breast cancer-specific protein-protein interaction network and 
identified key nodes that were significantly associated with disease 
progression and patient survival [4]. Their findings highlighted 
the importance of these nodes as potential prognostic markers 
and therapeutic targets in breast cancer. In another study, Jiang 
C., et al. utilized graph theory analysis to investigate PPIs in 
hepatocellular carcinoma [5]. By identifying key nodes based on 
centrality measures, they uncovered critical proteins involved in 
tumour progression, immune response, and drug resistance. Their 
findings provided valuable insights into the underlying molecular 
mechanisms and potential therapeutic avenues in hepatocellular 
carcinoma. Moreover, graph theory analysis has been employed 
to explore key nodes in PPIs across multiple cancer types [6]. 
Zhang and Wang conducted a comprehensive analysis of such 
networks using graph theory approaches and identified common 
key nodes that exhibited significant functional importance across 
various cancer types [7]. Their study emphasized the potential of 
these common key nodes as promising targets for broad-spectrum 
cancer therapies.

According to studies, graph theory analysis has been widely 
utilized to analyze PPIs in cancer research. In particular, the 
authors employed this method to identify hub proteins in breast 
cancer PPIs, as well as key nodes associated with lung cancer and 
their prognostic and therapeutic significance [8-10].

Recently study by Cohen AS, et al., employed graph theory 
analysis to characterize colorectal cancer PPIs [11]. Their findings 
revealed critical nodes that were implicated in tumour growth, 
invasion, and metastasis, underscoring the potential of graph 
theory analysis for identifying key players in cancer progression.

In this study, we aim to employ graph theory analysis for the 
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identification of crucial nodes in human protein interaction 
networks operating in multiple cancer varieties namely; Thyroid, 
Endometrial, Colorectal, Small cell lung, breast, Prostate, and 
Pancreatic [12]. We merge protein intersections that are prevalent 
in cancer-specific data and implement our previously established 
groundwork, which sorts proteins into zones as per their distance 
to the topological centre [13-15]. We comprehensively investigate 
zone 1, which is far one distance from the centre to discover 
important nodes linked with different cancer types. Th is st udy 
will contribute to our understanding of the molecular mechanisms 
underlying cancer and aid in the discovery of novel therapeutic 
targets tailored to specific cancer types.

METHODOLOGY 

In this study, we use our novel approach, which treated PPIs as 
metric spaces and examined the distance between nodes using 
graph theory [13]. We utilized a python wrapper for the C++ 
Boost Graph Library (http://www.boost.org/) and implemented 
the Dijkstra algorithm. The purpose was to calculate the shortest 
distances between pairs of nodes. By identifying the nodes with 
the lowest maximum distance to other nodes, we were able to 
determine the network centre. Employing this methodology, we 
categorized nodes based on their distance from the centre and 
subsequently divided them into zones.

Analysis of pathways and functional enrichment 

To determine the biological significance of different zones in  
the PPI network, proteins were grouped based on their distance 
from the center. An over-representation pathway analysis was 
performed on the protein groups associated with each zone. This 
analysis helped identify any specific functions that were attributed 
to those zones. To perform an enrichment analysis of the zones, 
various web services were used such as the gene set enricher in 
Comparative Toxigenomics Databases and enrichment analysis of 
Gene Ontology terms. A significance level of 0.01 was used as the 
threshold for statistical significance. Finally, to determine whether 
any zones exhibited functional specialization, the ratio of proteins 
participating in each enriched pathway was computed. 

An evaluation of oncogene and tumor suppressor 
protein pathways

An assessment was carried out on protein scores, with special 
attention given to those found in oncogenes and tumour 
suppressors. Using information from genome-wide sequencing 
studies of cancer, enriched pathways were identified. In particular, 
the focus was on examining the interactions that obtained high 
scores. The results showed that these interactions commonly 
involved genes that were causally linked with cancer [16]. 

Proteins essential for cellular processes, 
signaling, growth, cell cycle regulation, and 
potential therapeutic targets 

To evaluate the zone 1 of human functional protein interaction 
network, we identified a set of significant human proteins based 
on the knockout phenotypes of their corresponding genes in mice 
[17, 18]. 

RESULTS 

In our previous study, we found that it is possible to model human 
PPIs as metric spaces [13]. These spaces were categorized proteins 
into different zones based on their distance from the centre, where 
hub proteins reside; these proteins are highly connected and 
essential in biological networks. Additionally, the study discovered 
that zones closest to the network centre contain vital proteins 
specialised for specific housekeeping functions. Furthermore, 
the study suggests that proteins located near the network centre 
could be potential therapeutic targets. In this study, we aim to 
extend our analysis to explore the significance of zone 1, which 
is the most highly connected zone and is of critical importance. 
Among other functions, zone 1 is enriched for proteins associated 
with signal transduction, immune system, haemostasis, and 
disease pathways, making it a core component for organismal and 
cellular sensing and response to environmental, biological, and 
mechanical stresses [14]. Zone 1 encompasses proteins engaged 
in various cellular functions, including cell cycle regulation; stress 
response, reproduction, and DNA damage response [19]. Our 
focus is on the 374 proteins that make up zone 1. To establish 
whether specific pathways are enriched in this zone, we mapped 
it to proteins in KEGG pathways [12]. Our investigation aims to 
identify the proteins involved in all KEGG “pathways in cancer,” 
including the thyroid, endometrial, colorectal, small cell lung, 
breast, prostate, and pancreatic pathways (Table 1).

Distribution of Essential, signalling, growth, cell 
cycle, MAPK cascde, positive signalling and 
negative signalling in cancer-related proteins 
within zone 1 

Cancer development and progression heavily rely on the activation 
and regulation of signalling pathways. Targeting signalling 
pathways in cancer is important because cancer cells often have 
altered and dysregulated signalling pathways that allow them to 
grow and survive, and targeting these pathways can affect their 
ability to do so [20-23]. 

In all types of cancer, the signalling proteins exhibit dominance 
over other functions with a proportion of 94.4%, followed 
by essential proteins with 79%. The remaining functions have 
the following proportions; cell cycle (40.8%), MAPK cascade 

Tab. 1. Distribution of cancer-related 
proteins within zone 1

Type of cancer Number of proteins
Thyroid 8

Endometrial 17
Colorectal 22

Small cell lung 30
Breast 36

Prostate 33
Pancreatic 35
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(30.9%), negative signalling (29.8%), positive signalling (27%), 
and growth (18.2%) (Table 2). 

Distribution of apoptosis, positive apoptosis, 
negative apoptosis, oncogenes tumour 
suppressor, and therapeutic target in cancer-
related proteins within zone 1

Proteins are key players in cancer networks as they may be 
oncogenes (genes that promote cancer) or tumour suppressor 
genes (genes that prevent cancer), and their interactions influence 
the behaviour of cancer cells [24]. We found that oncogenes 
and successful therapeutic targets had the highest proportion at 
15.4%. This finding provides clear evidence that this particular 
area contains a high concentration of proteins, indicating that 
some of them could potentially be good targets for drugs. Here 
are the proportions of the remaining functions tumour suppressor 
(12.7%), apoptosis (3.8%), negative apoptosis (2.7%) and positive 
apoptosis (1.1%) (Table 3).

Common proteins among types of cancer 
pathways and their function 

Common proteins in cancer networks is very important because 
cancer is not caused by a single gene or protein, but rather by a 
network of interactions among various genes and proteins that 
regulate cell growth, division, and death. Due to this reason, we 
have identified two proteins, namely CCND1 and TP53 that are 
present in all cancer types that we are consider in our study. In 
addition, CCND1 and TP53 are essential, signalling, cell cycle 

and negative signalling proteins. Moreover, TP53 is growth 
protein and tumour suppressor. 

Table 4 presents the distribution of protein intersectionality in 
various types of cancer, including endometrial, colorectal, small 
cell lung, breast, prostate, and pancreatic cancer. All of these 
proteins are signalling proteins and have not been targeted. 
Among them, PIK3CA and AKT1 are oncogenes while TP53 
and PIK3R1 are tumour suppressors.

Finally, table 5 enlists the proteins that are commonly found 
in small cell lung, breast, prostate, and pancreatic cancer. It is 
observed that RB1 serves as an indispensable protein for various 
functions such as signalling, cellular growth, cell cycle regulation, 
negative signalling, and as a tumour suppressor.

DISCUSSION 

The study analyses the significance of zone 1, the most highly 
connected zone in human protein interaction networks, and 
identifies proteins involved in various cancer pathways. Targeting 
dysregulated signalling pathways is important for cancer 
treatment, and the study found that in all types of cancer, the 
signalling proteins exhibit dominance over other functions with 
a proportion of 94.4%. Furthermore, we found that oncogenes 
and successful therapeutic targets had the highest proportion at 
15.4%. This finding provides clear evidence that this particular area 
contains a high concentration of proteins, indicating that some of 
them could potentially be good targets for drugs. The study also 
identifies two essential proteins, CCND1 and TP53, are present 
in all cancer types considered. Finally, the study presents the 

E=Essential, S=Signaling, G=Growth, C=Cell cycle, M=MAPK cascade, P/S=Positive signaling, N/S=Negative signaling

Cancer type # of 
proteins E S G C M P/S N/S

Thyroid 8 8 (100%) 8 (100%) 1 (12.5%) 4 (50%) 2 (25%) 2 (25%) 3 (37.5%)
Endometrial 17 13 (76.4%) 17 (100%) 2 (11.7%) 6 (35.2%) 8 (47%) 2 (11.7%) 6 (35.2%)
Colorectal 22 17 (77.2%) 22 (100%) 6 (27.2%) 8 (36.3%) 11 (50%) 6 (27.2%) 7 (31.8%)
Small cell 

lung 30 21 (70%) 27 (90%) 5 (16.6%) 15 (50%) 5 (16.6%) 10 (33.3%) 8 (26.6%)

Breast 36 28 (77.7%) 32 (88.8%) 4 (11.1%) 14 (38%) 11 (30%) 6 
(16.6.5%) 11 (30.5%)

Prostate 33 27 (81.8%) 32 (96.9%) 8 (24.2%) 13 (39%) 9 (27.2%) 8 (24.2%) 10 (30.3%)
Pancreatic 35 29 (82.8%) 33 (94.2%) 7 (20%) 14 (40%) 10 (28%) 15 (42.8%) 9 (25.7%)

Tab. 2. Distribution of essential, signalling, 
growth, cell cycle, MAPK cascde, positive 
signalling and negative signalling in cancer-
related proteins within zone 1

Tab. 3. Distribution of apoptosis, positive 
apoptosis, negative apoptosis, oncogenes 
tumor suppressor, and therapeutic target in 
cancer-related proteins within zone 1.

Cancer type # of proteins A P/A N/A O SG T
Thyroid 8 1 (12.5%) 1 (12.5%) 0 (0%) 2 (25%) 1 (12.5%) 2 (25%)

Endometrial 17 0 (0%) 0 (0%) 0 (0%) 4 (23.5%) 2 (11.7%) 3 (17.6%)
Colorectal 22 1 (4.54%) 0 (0%) 1 (4.54%) 4 (18.1%) 2 (9.0%) 4 (18.1%)

Small cell lung 30 3 (10%) 1 (3.3%) 2 (6.6%) 3 (10%) 3 (10%) 4 (13.3%)
Breast 36 0 (0%) 0 (0%) 0 (0%) 4 (11.1%) 5 (13.8%) 5 (13.8%)

Prostate 33 1 (3%) 0 (0%) 1 (3%) 6 (18.1%) 5 (15.1%) 4 (12.1%)
Pancreatic 35 1 (2.8%) 0 (0%) 1 (2.8%) 5 (14.2%) 5(14.2%) 6 (17.1%)

A=Apoptosis, P/A=Positive apoptosis, A=Negative apoptosis, O=Oncogenes, S=Suppressor gene, T=Target protein

Tab. 4. Distribution of essential, signalling, 
growth, cell cycle, negative signaling, 
oncogenes and tumor suppressor in cancer-
related proteins within zone 1

Cancer type (Endometrial, Colorectal, Small cell lung, 
Breast, Pancreatic) with their common protein E S G C N/S O SG

CCND1       

PIK3CA       

TP53       

PIK3R1       

AKT1       

E= Essential, S= Signalling, G= Growth, C= Cell cycle, N/S= Negative signaling, O = Oncogenes, SG= Suppressor gene
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distribution of protein intersectionality in various cancers types, 
including small cell lung, breast, prostate, and pancreatic cancer, 
and identifies the protein RB1 as an indispensable protein for 
various functions and as a tumour suppressor. The study's findings 
provide valuable insights into the molecular mechanisms of cancer 
and highlight potential therapeutic targets.

CONCLUSION 

Protein-protein interaction networks play a crucial role in understanding biological processes, especially cancer. However, 
due to the large size and complexity of these networks, identifying 
the most critical nodes in these networks can be challenging. 
Graph theory has proven effective in addressing this challenge 
by identifying key nodes within PPI networks. This study's goal 
was to use a novel accepted approach to highlight and determine 
the potential most important nodes in different cancer types' PPI 
networks (Tables 1 to 5) to elucidate the underlying molecular 
mechanisms and identify potential therapeutic targets. The results 
of this study could become a valuable resource for researchers and 
clinicians to identify and target crucial nodes in Zone 1 to develop 
effective treatments for cancer.

In conclusion, we recommend continued research in zones closer 
to centre in PPI networks to identify and target critical nodes 
in various diseases, particularly cancer. These endeavours will 
augment our understanding of the intricate molecular pathways 
involved in diseases, and accelerate the development of effective 
treatments.
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E= Essential, S= Signaling, G= Growth, C= Cell cycle, N/S= Negative signaling, O = Oncogenes, SG= Suppressor gene

Tab. 5. Distribution of essential, signaling, 
growth, cell cycle, negative signaling, 
oncogenes and tumor suppressor in 
cancer-related proteins within zone 1

Cancer type (Small cell lung, Breast, Prostate, 
Pancreatic) with their common protein E S G C N/S O SG

E2F1       

CCND1       

PIK3CA       

TP53       

PIK3R1       

AKT1       

RB1       
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