Dosimetric evaluation of patient setup errors due to uncertainties during IMRT for head and neck cancer cases

Marwa Abdel Razek¹, Khaled Elshahat², Ehab Khalil¹, Wafaa Khalil³

- ¹ Department of Radiotherapy, NCI, Cairo University, Egypt
- ² Department of Clinical Oncology, Faculty of Medicine, Al Azhar University, Egypt
- ³ Department of Biophysics, Faculty of Sciences, Cairo University, Egypt

Background: IMRT become popular because dose escalation to the target can be done while sparing adjacent normal tissues. Intensity-modulated radiation therapy tends to produce steep absorbed-dose gradients between the target volume and the OAR. This study was done to determine the error during RT on positioning displacement for patients treated for head and neck cancer. We tried to find the magnitude of daily setup errors to determine the set up error cases. The results can help physicians to determine the most suitable margin for head and neck cases.

Results: Data from 20 patients calculated. The Right/Left direction as X direction, Anterior/Posterior direction as Y shift and Up/Down direction as Z shift. Average shift for all fractions calculated to be 0.05 cm, 0.08 cm and -0.02 cm as RT/LT, Ant/Post and Up/Down shifts.

Conclusions: To reduce setup errors in patients with H&N cancer receiving RT. The use of on-line image-guided radiotherapy is recommended to increase accuracy.

Key words: Adaptive Radiotherapy, Head and Neck Cancer; Image-guided Radiotherapy; Setup Error; IMRT

Address for correspondence:

Fadwa Allouche, Department of Radiation Oncology, Fez Hassan Ii University Hospital Center, Morocco, email: dr.allouch.fadwa@gmail.com

Word count: 5638 Tables: 33 Figures: 00 References: 12

Received: - 02 February 2021

Accepted: - 25 February, 2021

Published: - 02 March 2021

INTRODUCTION

Radiation Therapy (RT) is commonly used as part of multiple modality treatment for prostate cancer. Intensity-Modulated Radiation Therapy (IMRT) has become increasingly popular because dose escalation to the target can be done while sparing adjacent normal tissues. Several factors such as the accuracy of the immobilization device change in body contours, and tumor regression could lead to setup uncertainties during RT, all of these factors need to be minimized with the use of special approaches. Image-Guided Radiation Therapy (IGRT) can be used to correct and quantify geometrical uncertainties for daily setup [1].

IMRT target contours in three dimensions, often with six independent values-anterior, posterior, medial, lateral, superior, inferior [2]. Intensity-modulated radiation therapy tends to produce steep absorbed-dose gradients between the target volume and the OAR. Having realistic margins for both the tumor volume and any OAR. Factors affecting margin requirements to define the PTV include uncertainty of patient positioning, mechanical uncertainty of the equipment (e.g. gantry sagging), dosimetric uncertainties (e.g. penetration of the beam), the use of motion management techniques such as gating, image transfer errors from CT and simulator to the treatment unit, and human factors. These factors will vary from center to center, and, within a given center, from machine to machine and from patient to patient. The use of patient immobilization devices, the application of quality-assurance programs, and the skill and experience of the radiographers/radiotherapists are also important and must be taken into account. Additionally, the use of different image-guidance systems or other uncertaintyreduction techniques can significantly alter the size of the required margins.

An error is defined as; The difference between the measured (observation) value and the actual (true) value [3-12].

Errors can be divided into three categories:

- Personal Error
- Systematic Error
- Random Error

Systematic Error

The type of error arises due to defect in the measuring device or its data handling system, or because the instrument is wrongly used by the experimenter. Generally, it is called "ZERO METHODS ERROR". It may be positive or negative error and can be removed by correcting measurement device. [13-14]

Systematic errors may be of four kinds:

- such as a thermometer that reads 102°C when immersed in boiling water and 2°C when immersed in ice water at atmospheric pressure. Such a thermometer would result in measured values that are consistently too high.
- Observational: For example, parallax in reading a meter scale.
- Environmental: For example, an electrical power that causes measured currents to be consistently too low.
- Theoretical: Due to simplification of the model system or approximations in the equations describing it. For example, if your theory says that the temperature of the surrounding will not affect the readings taken when it actually does, then this factor will introduce a source of error [13].

Random Error

The error produced due to sudden change in experimental conditions. For example: During sudden change in temperature, change in humidity, fluctuation in potential difference (voltage). It is an accidental error and is beyond the control of the person making measurement. Random errors are positive and negative fluctuations that cause about one-half of the measurements to be too high and one-half to be too low. Sources of random errors cannot always be identified. Possible sources of random errors are as follows:

- Observational. For example, errors in judgment of an observer when reading the scale of a measuring device to the smallest division.
- equipment.

Random errors, unlike systematic errors, can often be quantified by statistical analysis; therefore, the effects of random errors on the quantity or physical law under investigation can often be determined. The precision is limited by the random errors. It may usually be determined by repeating the measurements.

Random errors are errors which fluctuate from one measurement instrument may not be able to respond to it or to indicate it or between different fractions. the observer may not be able to discern it. They may occur due to noise. There may be extraneous disturbances which cannot RESULTS be taken into account. They may be due to imprecise definition. They may also occur due to statistical processes such as the roll of dice [9,12].

positioning displacement for patients treated for Head and Neck. We tried to find the magnitude of daily setup errors to average data from 20 patient during all fractions calculated determine the set up error cases. The results can help physicians to determine the most suitable margin for H&N cases.

Patients

We used data from 20 patients treated for Head and Neck at Instrumental: For example, a poorly calibrated instrument Our radiotherapy center. All patients received IGRT with daily on-line kilovoltage imaging with weekly Cone Beam Computed Tomography (CBCT) to correct the treatment position. No patients had ART planning before a prescribed dose of (70) Gy.

Treatment Planning

To enhance the accuracy of the daily irradiated position, simulation using a Computed Tomographic (CT) scan simulator (GE ct) was made. The scans consisted of a protocol with a 2.5-mm-slice thickness, and Marks on the patients' skin were drawn using setup lasers to facilitate an accurate daily position.

For patients receiving definitive RT, the Clinical Target Volume (CTV) was defined as the gross tumor volume plus a margin of 7 mm posteriorly, and 10 mm in all other directions. All patients underwent IMRT plans and all plans were carried out using a commercial radiation treatment planning system (Elekta).

Treatment verification

All patients were treated with IGRT with linear accelerator equipped with an on-line On-Board Imaging (OBI) function including two-dimensional (2D) kilovoltage (kV) images and three-dimensional (3D) CBCT. The technicians set up the patients on a couch in the simulation room according to the marks drawn on their bodies. On-line OBI images (2D kV images daily and 3D CBCT weekly) were taken and sent to the station where they could be registered to digitally reconstructed radiographs from the treatment planning images. Two technicians compared these paired images by correlating the bony anatomy and corrected the difference by shifting the couch • Environmental. For example, unpredictable fluctuations translationally before treatment. Then, physician confirmed in line voltage, temperature, or mechanical vibrations of the corrected on-line images. Anatomic reference landmarks included at least three visible bony structures.

Setup displacement

After image registration, quantification of alignment data for daily OBI in the Superior-Inferior (SI), Anterior-Posterior (AP), and Medial-Lateral (ML) directions, and Couch Rotation (CR) for all patients were collected. For each direction, the recorded setup displacements were composed of two components, to the next. They yield results distributed about some mean Systematic Errors (SE) and Random Errors (RE). The SE was value. They can occur for a variety of reasons. They may occur the deviation between the simulated patient position and the due to lack of sensitivity. For a sufficiently a small change an average patient position, while the RE was that which occurred

Setup errors are modelled as shifts of the beam isocenter. A shift of the beam isocenter leads to a non-rigid shift of the dose distribution. Small setup errors might thus lead to large This study was done to determine the error during RT on displacements of spots that travel close to and in parallel with steep density gradients, such as along bone edges.in our study in table (1). The Right/Left direction as X direction, Anterior/ Posterior direction as Y shift and Up/Down direction as Z shift

as shown. Then drawing the relation between X, Y and Z shift as a function of no. of fractions then average shift for all fractions calculated to be (0.05) cm, (0.08) cm and (-0.02) cm as RT/LT, Ant./Post. And Up/Down shifts.

Tab. 1. Bet Shifts and no. of fractions. Shifts were found that it range from 1 mm to 4 mm in Xdirection and from 1 mm to 2 mm in Y and from 2 mm to 5 mm in Z direction (between + and in all directions). Then we applied shifts to plan on planning system and recording differences occurred on DVH's of targets and critical organs

No.	X _{avg}	Yavg	Z _{avg}
1	0.39	-0.07	0.04
2	-0.04	0.04	-0.12
3	-0.05	0	-0.0 1
4	-0.0 1	0.04	0.23
5	-0.03	0.11	-0.14
6	0.08	0.11	-0.1
7	-0.0 1	0.13	0.0 1
8	0.07	0.15	-0.15
9	0.1	0.15	-0.23
10	0.07	0.19	-0.07
11	0.03	0.08	-0.03
12	0.03	0.13	-0 .10
13	0.03	0.12	-0.13
14	0.06	0.1	-0 .07
15	0.05	0.12	-0.04
16	0.1	0.23	-0.1
17	0.03	0.12	-0.11
18	0.04	0.11	-0.11
19	0.07	0.11	-0.04
20	0.07	0.15	-0.04
21	0.03	0.07	0.0 1
22	0.07	-0.03	-0.1
23	0.08	0.0 1	0.03
24	0.05	0.06	0.02
25	0	0.06	-0.05
26	0	0.03	0
27	0.0 1	0.07	0.07
28	0.05	0.09	0.0 1
29	0.05	0.04	0.48
30	0.05	0.05	0.03
31	0.06	0.03	0.02
32	0.04	0.02	0.0 1
33	0.03	0.04	0.03
34	0.1	0.02	0.0 1
35	0.05	0.0 1	-0.0 1

Tab. 2. Changes occurred to dose delivered to 98% volume of PTV45 with different shifts

	PTV54Gy	98%	
Shift	dose X	dose Y	dose Z
1	50.877	50.766	50.878
2	50.887	50.148	50.814
3	50.775	49.521	50.585
4	50.704	48.849	50.398
5	50.323	47.453	50.358
6	50.09	45.515	49.88
7	49.801	41.556	49.575
8	49.251	38.581	49.195
-1	50.651	50.881	50.833
-2	50.622	50.626	50.617
-3	50.368	50.258	50.442
-4	50.211	49.839	50.197
-5	49.9	49.391	49.653
-6	49.499	49.072	49.096
-7	49.067	48.446	48.566
-8	48.594	47.811	47.924

Tab. 3. Changes occurred to dose delivered to 98% volume of PTV60 with different shifts

	PTV60Gy	98%	
Shift	Dose X	Dose Y	Dose Z
1	55.661	56.07	55.574
2	55.228	56.059	55.287
3	54.526	55.965	54.89
4	53.73	55.614	54.156
5	52.545	55.248	53.25
6	51.185	54.696	52.314
7	49.7	53.992	51.38
8	48.118	53.267	50.179
-1	55.506	55.193	55.714
-2	54.939	54.485	55.425
-3	54.07	53.649	54.904
-4	64.754	52.196	54.494
-5	51.407	50.62	53.78
-6	49.74	48.922	52.985
-7	57.891	47.437	52.156
-8	45.739	45.268	51.238

		DT) (76.1	0001				ontic chicara	25 07 CV	
4. Changes Max dose of		PTV700	•		Tab. 7. Changes	-h :c-	optic chiasm	35.97 GY	
ens with different shifts	shift	t dose)			occurred to Max dose of Optic Chiasm with		Max dose X		IV
	1	64.408	64.92	5 63.979	different shifts	1	35.257	40.796	
	2	64.299	65.12	7 63.39		2	36.394	48.758	
	3	63.95	7 64.94	3 62.569		3	35.797	51.74	
	4	63.36				4	36.405	53.457	
						5	35.329	56.585	
	5	62.208				6	34.644	58.335	
	6	61.513	63.62	4 59.426		7	34.218	59.904	
	7	59.90	62.90	5 58.138		8	37.179	59.958	
	8	58.20	62.35	1 56.817		-1	36.28	31.255	
	-:	64.32	2 63.74	6 65.025		-2	35.08	27 .848	
	-2	64.132				-3	35.804	24.333	
						-4	36.559	20.367	
	-3	63.36				-5	34.425	18.204	
	-4	62.7				-6	35.884	16.471	
	-5	61.12	59.54	4 64.226		-7	33.829	15.847	
	-6	59.48	1 58.33	9 63.363		-8	34.841	13.338	
	-7	57.89	1 57.56	62.542			1		
	-8	55.793					1	1	
		33.73.	30.73	31.032	Tab. 8. Changes occurred		Brain stem		
5. Changes Max dose of		It lens	11.93GY		to Max dose of Brain stem with different shifts		t Max dose X		(
lens with different shifts	shift	Max dose	Max	Max	Stem with unferent silles	1	51.033	51.413	+
			dose Y	dose Z		2	51.266	51.78	+
	1	11.887	14.616	12.956		3	51.744	52.131	1
	2	12.318	18.333	12.959		4	54.656	52.48	1
	3	11.993	21.774	12.839		5	54.648	52.909	1
	4	12.472	23.395	12.643		6	54.4	53.118	
	5	12.282	25.196	13.765		7	55.876	53.558	
	6	12.725	27.55	13.018		8	55.915	54.742	
	7	12.688	30.325	13.234		-1	51.327	53.683	T
	8	13.331	31.743	13.754		-2	52.087	51.841	
	-1	12.495	10.77	11.97		-3	53.902	51.65	\dagger
	-2	11.784	9.408	11.766		-4	54.455	51.602	\dagger
	-3	11.729	7.703	11.936		-5	55.176	50.448	\dagger
	-4	12.381	5.8	11.667		-6	56.864	50.392	\dagger
	-5	12.108	5.149	11.679		-7	58.499	50.064	+
	-6	11.542	4.169	11.719		-8	59.813	49.592	+
	-7	10.959	4.427	11.45		-8	33.013	+3.334	
	-8	10.872	4.035	11.667					
		23.072			Tab. 9. Changes occurred		spinal cor	d 39.516G	Y
. 6. Changes occurred to		Rt lens	5.492 GY		to Max dose of Spinal	sh	ift Max dose	X ax dose	١
x dose of RT lens with	shift		Illax dose	Illax dose	cord with different shifts	1	39.953	39.88	
erent shifts	1	5.213	6.331	5.107		2	41.217	40.281	
	2	5.485	7.724	5.5		3	43.131	39.985	I
	3	5.302	8.7	5.225		4	43.554	39.764	T
	4	5.187	10.367	6.079		5	45.131	39.836	
	5	5.25	10.44	5.993		ϵ		42.752	1
	6	4.908	12.508	5.681		7		40.312	T
	7	5.194	15.007	6.057		8		41.485	
	8	5.434	17.473	5.708		-:		40.191	1
	-1	5.624	5.09	5.678		-:		40.519	+
	-2	6.027	4.733	5.578		-3		40.602	+
	-2			1				.0.002	_
	-3	5.712	4.214	5.777		-4	42.64	39.919	
		5.712 5.305	4.214 3.524	5.777 5.609		4		39.919 41.707	+
	-3					-[43.938	41.707	+
	-3 -4	5.305	3.524	5.609		-(43.938 45.044	41.707 42.066	-
	-3 -4 -5	5.305 6.499	3.524 3.77	5.609 5.936		-[43.938 45.044 45.117	41.707	-

-8

6.227

3.085

5.506

Tab. 10. Changes		Optic chiasm	PRV	34 Gy
occurred to Max dose of	Shift	Max dose X	Max dose	Max dose Z
optic chiasm PRV with different shifts	1	36.882	41.729	36.372
unierent sinits	2	36.394	49.672	35.185
	3	36.023	51.842	34.591
	4	36.405	54.931	33.298
	5	35.916	58.258	34.4
	6	35.467	58.849	33.842
	7	34.802	61.59	33.977
	8	38.27	61.197	30.738
	-1	36.28	32.268	36.971
	-2	35.841	28.971	36.349
	-3	35.804	25.866	36.916
	-4	36.684	20.848	38.199
	-5	35.108	18.204	37.309
	-6	36.352	17.285	37.698
	-7	34.87	16.25	38.967

35.763

Tab. 13. Changes		Lt Parotid	Mean	25 Gy
occurred to Max dose of	Shift	Dose X	Dose Y	Dose Z
LT. Parotid with different shifts	1	27.595	26.237	26.436
3111113	2	29.488	26.824	26.844
	3	31.315	27.195	27.393
	4	33.341	27.502	28.095
	5	35.428	27.99	1 28.752
	6	37.597	28.413	29.489
	7	39.612	29.017	30.379
	8	41.882	29.624	31.234
	-1	24.345	25.656	25.627
	-2	22.743	25.578	25.472
	-3	21.365	25.235	25.32
	-4	20.074	24.973	25.182
	-5	18.95	24.825	25.207
	-6	17.838	24.582	25.298
	-7	16.957	24.609	25.507
	-8	16.046	24.466	25.697

Tab. 11. Changes					
occurred to Max dose					
of Brain stem PRV with					
different shifts					

	B S.PRV	45.6 Gy	
Shift	\/lax dose	fi/lax dose	Vlax dose
1	55.444	54.46	1 54.059
2	56.763	55.12	1 52.819
3	55.937	56.145	51.913
4	57.057	56.663	51.458
5	58.347	57.942	51.158
6	60.711	58.035	50.305
7	62.574	61.039	49.788
8	62.764	60.852	50.65
-1	54.177	53.822	55.658
-2	55.823	53.857	56.914
-3	58.35	53.779	58.502
-4	58.955	53.722	59.74
-5	60.527	52.636	63.105
-6	62.401	52.589	64.788
-7	65.043	53.287	63.783
-8	67.232	54.344	64.363

13.872

38.895

Tab. 14. Changes					
occurred to Max dose of					
RT. Parotid with different					
shifts					

	RT parotid	25.3GY	
Shift	Max Dose	Max Dose	Max Dose
1	24.297	26.25	26.366
2	22.805	26.792	26.96
3	21.545	27.244	27.602
4	20.154	27.72	28.16
5	18.895	28.336	29.011
6	17.89	28.828	29.739
7	16.907	29.49	130.622
8	15.994	30.018	31.246
-11	27.38	25.258	25.285
-2	29	24.803	24.806
-3	30.646	24.399	24.482
-4	32.304	24.082	24.189
-5	33.959	23.623	23.859
-6	35.7	23.311	23.796
-7	37.45	23	1 23.73
-8	39.178	22.743	23.773

Tab. 12. Changes occurred to Max dose S.C. PRV with different shifts

	S.C.PRV	49.9GY	
Shift	Max dose	Max dose	Max dose
1	50.282	49.159	48.046
2	52.184	48.399	47.596
3	53.176	48.53	1 44.38
4	54.685	47.983	44.108
5	54.536	47.746	42.577
6	57.125	49.087	40.573
7	59.731	48.98	39.647
8	58.396	48.569	38.95
-1	49.157	49.726	51.042
-2	50.817	51.092	51.484
-3	51.076	50.343	53.242
-4	53.061	51.125	54.535
-5	53.857	51.834	56.308
-6	56.933	51.633	61.403
-7	56.416	50.405	61.255
-8	58.762	51.567	63.104

Tab. 15. Changes occurred to Mean dose of LT. Cochlea with different shifts

Lt c	och lea	mean 26.9	Gy<45
Shift	Dose X	Dose Y	Dose Z
1	27.895	27.592	26.075
2	30.316	30.82	25.808
3	32.448	33.476	24.966
4	35.475	34.57	1 24.639
5	37.859	37.309	24.228
6	38.97	40.127	23.123
7	42.462	46.016	23.02
8	43.021	50.14	23.711
-1	25.225	25.77	27.507
-2	24.664	26.077	28.843
-3	24.345	26.113	29.139
-4	25.252	26.065	30.747
-5	24.71	25.506	31.586
-6	24.431	26.337	32.662
-7	25.501	26.26	1 34.268
-8	25.484	27.122	35.478

Tab 16 Character accounted	Rt Cochlea		42 Gy	
Tab. 16. Changes occurred to Mean dose of RT. Cochlea	Shift	Dose X	Dose Y	Dose Z
with different shifts	1	39.249	43.052	42.22
	2	37.369	44.969	41.235
	3	37.308	46.934	40.955
	4	36.109	47.565	40.342
	5	35.122	50.062	40.07
	6	34.088	53.054	38.986
	7	34.029	56.644	39.013
	8	33.184	58.154	37.529
	-1	43.546	41.769	41.483
	-2	45.458	41.559	41.598
	-3	48.136	40.816	42.103
	-4	48.563	39.964	41.937
	-5	51.193	39.73	1 42.578
	-6	52.523	38.92	42.989
	-7	52.402	39.247	42.777
	-8	52.595	39.142	43.585

Tob 10 Changes are worden		Rt Temp	59 Gy	
Tab. 19. Changes occurred to Max dose of RT. Temp with	Shift	Dose X	Dose Y	Dose Z
different shifts	1	61.96	60.265	60.188
	2	60.457	61.111	61.303
	3	57.958	61.5	59.114
	4	57.342	63.218	59.889
	5	56.753	64.083	58.195
	6	55.213	64.35	58.163
	7	54.224	64.6	58.023
	8	52.399	66.342	58.917
	-1	60.538	62.228	61.112
	-2	64.064	59.324	61.718
	-3	61.688	58.93	161.32
	-4	62.364	57.562	63
	-5	61.708	58.362	62.543
	-6	63.547	56.536	61.952
	-7	63.148	56	63.457
	-8	64.203	55.122	62.953

Tab. 17. Changes occurred to Max dose of Mandible with	Shift	Dose X	Dose Y	Dose Z
different shifts	1	70.443	71.084	71.076
	2	69.827	70.557	71.256
	3	71.264	68.992	70.351
	4	70.715	72.218	70.024
	5	70.811	71.352	72.473
	6	72.82	70.321	70.941
	7	73.1	69.697	71.085
	8	74.055	70.91	70.962
	-1	70.052	69.865	71.08
	-2	69.616	69.02	69.672
	-3	69.577	69.68	70.86
	-4	69.991	71.36	69.675
	-5	68.743	68.404	68.571

-6

-7

-8

69.352

69.136

69.535

Mandible 70 Gy

		LT Eye	48 Gy	
Tab. 20. Changes occurred to Max dose of Lt .Eye with	Shift	Dose X	Dose Y	Dose Z
different shifts	1	49.33	51.196	51.49
	2	51.012	53.328	49.833
	3	50.488	53.358	50.568
	4	51.101	56.145	54.947
	5	51.156	54.779	54.195
	6	51.208	58.32	54.625
	7	51.902	55.738	53.512
	8	51.372	58.4	53.129
	-1	48.008	47.025	47.557
	-2	45.831	45.382	45.913
	-3	45.301	43.542	44.929
	-4	44.558	39.304	44.682
	-5	43.405	38.584	43.116
	-6	41.14	35.227	42.48
	-7	40.781	35.129	42.147
	-8	39.221	31.59	41.096

Tab. 18. Changes occurred
to Max dose of Lt.Temp.with
different shifts

	Lt Temp	59.3 Gy	
Shift	Dose X	Dose Y	Dose Z
1	59.884	59.89	59.775
2	62.287	60.876	58.143
3	61.268	62.334	58.515
4	61.925	63.638	57.838
5	62.071	63.576	55.5
6	63.143	64.044	55.996
7	62.941	62.357	55.885
8	63.252	64.011	52.58
-1	61.129	59.446	60.117
-2	58.444	58.887	60.29
-3	58.355	57.707	61.783
-4	56.259	55.826	62.22
-5	55.878	57.763	63.274
-6	55.569	56.698	64.911
-7	54.96	52.997	63.539
-8	53.756	52.942	62.672

69.143 68.556

68.994

66.8

69.026

66.973

Tab. 21. Changes occurred		Rt Eye	27.5Gy	
to Max dose of RT Eye with	Shift	Dose X	Dose Y	Dose Z
different shifts	1	25.553	31.444	27.816
	2	26.012	36.865	29.768
	3	25.243	38.46	29.717
	4	22.954	41.132	32.998
	5	22.185	43.974	31.796
	6	20.905	45.087	32.18
	7	21.506	47.015	32.162
	8	21.449	48.588	32.305
	-1	28.709	25.323	26.597
	-2	29.107	23.302	25.778
	-3	29.442	20.852	25.273
	-4	30.66	15.872	24.12
	-5	31.475	13.664	23.3
	-6	32.046	11.502	23.78
	-7	31.66	1 11.274	22.595
	-8	31.59	1 8.945	22.378

Tab. 22. Changes occurred
to Max dose of RT Eye with
different shifts

LT Op	tic Nerve	Nerve 38Gy	
Shift	Dose X	Dose Y	Dose Z
1	38.468	41.899	36.95
2	37.23	147.345	36.9
3	38.402	51.182	36.227
4	37.475	52.393	35.699
5	37.718	54.413	35.957
6	39.357	56.603	36.105
7	38.668	59.258	35.199
8	37.889	61.62	36.89
-1	38.556	33.776	38.469
-2	36.54	30.619	37.84
-3	36.926	27.664	39.98
-4	37.367	21.323	40.335
-5	37.417	19.764	38.332
-6	36.475	15.88	38.513
-7	36.209	14.186	39.578
-8	36.508	12.258	40.4

Tab. 25. Changes occurred		RTTMJ	65 Gy	
to Max dose of RT TMJ with	Shift	Dose X	Dose Y	Dose Z
different shifts	1	64.223	67.173	63.641
	2	63.891	66.94	66.618
	3	59.44	66.8	63.005
	4	58.77	72.07	64.119
	5	58.107	69.614	62.941
	6	52.846	71.024	63.547
	7	50.865	70.904	62.062
	8	47.48	69.608	62.014
	-1	66.388	65.361	66.138
	-2	70.02	63.395	64.624
	-3	67.289	61.542	65.01
	-4	68.788	59.19	64.654
	-5	68.401	55.572	66.617
	-6	70.995	51.764	63.441
	-7	68.994	50.018	63.364

-8

69.814

Thyroid Glani 43.5Gy 43.5Gy

44.649

44.169

43.808

43.152

42.621

42.273

41.995

48.455

62.909

Dose Z

44.615 45.885

46.237

46.608

46.756

46.95

47.115

47.348 46.881

44.47 44.082

43.453

43.22

42.71

42.385

44.791

44.347

44.25

44.195

44.101

43.926

43.667 41.944

Tab. 23. Changes occurred to
Max dose of RT Optic Nerve
with different shifts

Rt Optic Nerv		32 Gy	
Shift	Dose X	Dose Y	Dose Z
1	31.097	38.036	32.299
2	31.79	47.338	31.642
3	31.375	48.664	34.853
4	30.142	52.028	32.954
5	30.272	53.753	34.312
6	30.44	54.946	32.85
7	31.056	57.88	33.088
8	29.345	59.509	32.58
-1	32.819	27.319	33.15
-2	34.553	26.87	33.916
-3	33.372	21.68	31.938
-4	33.113	18.287	32.003
-5	34.682	16.846	31.186
-6	33.818	15.278	31.379
-7	34.136	14.09	132.217
-8	35.408	13.272	31.622

iab. 26. Changes	•		•
occurred to Mean dose	Shift	Dose X	Dose Y
of Thyroid gland with	1	45.523	45.633
different shifts	2	45.886	45.902
	3	46.07	46.255
	4	46.211	46.841
	5	46.259	47.27
	6	46.281	47.504
	7	46.232	47.801
	8	46.203	48.52
	-1	45.004	45.061

-2

-3

-4

-5

-6

-7

Tab. 24. Changes occurred
to Max dose of LT TMJ
with different shifts

	LTTMJ	69 Gy	
Shift	Dose X	Dose Y	Dose Z
1	69.087	72.423	68.638
2	69.299	68.692	69.984
3	69.234	71.458	72.068
4	70.151	69.666	68.022
5	70.289	70.161	67.092
6	71.586	70.679	70.456
7	73.394	72.707	68.928
8	71.934	71.162	67.834
-1	69.739	67.478	68.159
-2	66.332	66.968	67.805
-3	68.364	66.321	68.791
-4	68.062	62.82	68.011
-5	65.243	60.664	67.895
-6	64.393	57.36	68.57
-7	62.148	55.866	66.769
-8	59.736	52.004	66.901

Tab. 27. Changes
occurred to Mean dose
of Esophageal inlet with
different shifts

Tab. 26. Changes

	Esophageal Inlet	42 Gy	Mean
Shift	Dose X	Dose Y	Dose Z
1	40.919	42.328	42.012
2	40.381	42.024	41.604
3	39.498	42.523	41.455
4	38.964	42.604	41.649
5	38.453	43.449	41.114
6	37.454	43.509	41.262
7	37.467	43.263	40.571
8	37.048	44.197	40.824
-1	43.26	42.159	41.88
-2	44.107	41.567	42.026
-3	44.783	40.504	42.153
-4	46.28	40.821	41.451
-5	47.193	40.57	41.333
-6	48.138	40.406	41.225
-7	48.965	40.224	41.031
-8	50.518	39.373	40.536

Tab. 28. Changes occurred to Mean dose		Cervical Esophagus	39.22Gy	Mean
of Cervical Esophagus	Shift	Dose X	Dose Y	Dose Z
with different shifts	1	38.67	38.925	38.897
	2	38.196	38.3	38.653
	3	37.779	37.9	1 38.554
	4	37.313	37.772	38.164
	5	37.043	37.386	37.768
	6	36.745	36.882	37.634
	7	36.375	36.088	37.322
	8	36.292	35.703	37.155
	-1	39.837	39.733	39.517
	-2	40.485	39.715	39.884
	-3	40.907	39.833	40.049
	-4	41.265	40.319	40.192
	-5	41.997	40.474	40.268
	-6	42.375	40.717	40.605
	-7	42.88	140.653	41.026
	-8	43.473	40.724	41.162

Tab. 31. Changes occurred to	RT (Carotid	64.3Gy	
Mean dose of Rt Carotid with	Shift	Dose X	Dose Y	Dose Z
different shifts	1	65.155	64.474	64.573
	2	65.155	64.513	64.534
	3	65.155	64.479	64.57
	4	65.155	64.394	64.484
	5	65.155	64.298	64.233
	6	65.155	64.199	63.886
	7	65.155	64.066	63.4
	8	65.155	63.822	62.97
	-1	64.317	64.634	64.496
	-2	63.93	164.597	64.294
	-3	63.506	64.464	64.047
	-4	63.183	64.748	64.04
	-5	62.653	64.544	63.876
	-6	61.903	64.605	63.752
	-7	61.269	64.34	63.386
	-8	60.634	64.379	63.277

Tab. 29. Changes occurred to
Mean dose of Base of tongue
with different shifts

Base Of Tongue		45Gy	
Shift	Dose X	Dose Y	Dose Z
1	45.492	45.376	45.6
2	45.506	59.502	45.732
3	45.568	45.453	46.032
4	45.876	45.643	46.227
5	46.294	45.54	46.493
6	46.447	45.488	46.708
7	46.825	45.432	47.118
8	41.385	45.25	147.426
-1	45.256	45.162	45.223
-2	45.529	44.724	44.86
-3	45.716	44.694	44.579
-4	45.822	44.643	44.534
-5	46.36	44.376	44.256
-6	46.453	44.376	44.298
-7	47.035	44.293	44.284
-8	47.605	44.345	44.322

Tab. 30. Changes occurred to Mean dose of Lt Carotid with different shifts

		LT Carotid	60.5Gy	
Sh	ift	Dose X	Dose Y	Dose Z
1	L	60.431	60.334	60.202
2	2	60.307	59.746	59.739
3	3	60.243	59.323	59.515
4	1	60.149	59.255	59.41
5	5	59.736	58.885	58.999
6	5	59.338	58.601	58.471
7	7	59.037	58.111	57.999
8	3	58.399	57.901	57.508
-:	1	60.461	60.709	60.725
-:	2	60.31	60.837	60.674
-3	3	60.078	61.142	60.583
-4	4	59.968	61.704	60.59
-!	5	59.761	61.826	60.783
-(6	59.598	62.244	60.974
-:	7	59.039	62.124	60.757
-8	8	58.959	62.274	60.833

DISCUSSION

Several studies have investigated setup uncertainty in H&N cancer patients [8]. According to the International Commission on Radiation Units and Measurements report 62 [5], an inappropriate definition of the CTV-PTV margin, accounting for organ motion and setup uncertainties, may yield an underdose to the CTV. Organ motion could be neglected, while variability due to inadequate setup or deformity must be carefully considered. In clinical practice, use of daily IGRT is not always possible because of limited facilities in some countries as well as concerns about increased daily doses to patients [4]. Because of RT treatment for H and N cancer, anatomical modifications due to tumor regression led to geometric change of tumor volume and organs at risk and Margins in the three translation directions should be done.

Generally, our study record shifts during all fractions (shown in Tables 1-33).

This study recommends on-line IGRT for patients receiving RT to deliver more accurate dose to tumor and avoid extra dose to organs at risk due to anatomical change also according to (11-12) shifts in all direction reduced when using on line image guided leading to reduce margins in all direction surrounding the tumor and saving critical organs.

The primary objective of the study was to measure inter-fraction setup variation in head and neck cancer patients undergoing. Displacements of portal images from CT images, set as reference images, were measured for calculating errors are related to any accidental error during setup, due to mis-positioning of the patient in the mask, movements of the patient or organ motion in the period between positioning and start of irradiation or during irradiation. Naiyanet, N. et al [10] reported the L-R, S-I and A-P axes. While our study has shown the errors along the L-R, S-I and A-P axes) that 0.05 mm, 0.08 mm and -0.02 mm. Large systematic errors lead to a large under-dosage.

The secondary objective of the present study was to define adequate CTV-to-PTV margin for IMRT of head and neck cancer in our department. Ideally, the CTV-to-PTV

Tab. 32. Illustrate Changes occurred in		Lt lens	Rt lens	Optic Chiasm	B.S.	s.c.	Lt parotid	RT parotid	Lt cochlea	Rt cochlea	Mandibe	Lt Temp	Rt temp
critical organs according to shifts	X +direction	↑	Const.	1	1	↑	↑	\	↑	\	variated	↑	V
	X -direction	↓	variated	↓	1	1	↓	↑	variated	1	variated	\downarrow	1
	Y +direction	1	1	1	1	variated	1	↑	1	1	variated	↑	↑
	Y -direction	↓	↓	↓	4	variated	↓	V	variated	↓	variated	\downarrow	↓
	Z +direction	↑	variated	↓	4	↓	↑	↑	↓	↓	variated	\downarrow	↓
	Z -direction	variated	variated	1	1	1	const	\	1	↑	↓	↑	1

Tab. 33. Illustrate changes occurred in		Lt eye	Rt eye	Lt O.N	Rt O.N.	Lt TMJ	Rt TMJ	Thyroid	Eso. inlet	Cervical Eso.	Base of tongue	Lt carotid	Rt carotid
critical organs according to shifts	X +direction	1	4	variated	4	variated	\	↑	\downarrow	\	↑	\	Almost const.
	X -direction	4	1	↓	↑	↓	↑	↓	\uparrow	↑	↑	↓	V
	Y +direction	1	1	1	↑	variated	variated	↑	\uparrow	↓	Almost const.	↓	Almost const.
	Y -direction	4	4	↓	4	↓	V	↓	\downarrow	↑	V	↑	Almost const.
	Z +direction	4	1	variated	variated	variated	variated	↑	\downarrow	↓	↑	↓	V
	Z -direction	1	1	1	variated	variated	variated	↓	\downarrow	↑	\downarrow	Almost const.	\

margin should be determined solely by the magnitudes of the LIST OF ABBREVIATIONS uncertainties involved. In practice, the clinician usually also considers abutting healthy tissues when deciding on the size of the CTV-to-PTV margin.

Generally, our study record shifts during all fractions (shown in Tables 1) & then illustrated the differences occurred in target and critical organs according to shifts that applied to plan on planning system. We found that all targets dose reduced with increasing shifts.

CONCLUSION

In this examine, the scientific effectiveness of planned and delivered dose distributions of IMRT technique for head-andneck cancer became evaluated the usage of both physical and dose constraints criteria. The distinction between the "one-toall" and "cascade" dose distributions became small, statistically insignificant, and really near the values of the corresponding treatment plans. However, for a fraction of the sufferers and given OAR, the differences among the added and deliberate doses had been mainly large. These findings aid the necessity of the correct affected person setup earlier than the treatment the usage of IGRT, as a result minimizing dose inaccuracy mistakes. We recommend reducing setup errors in patients with Head and Neck cancer receiving RT, the use of on-line image-guided radiotherapy is recommended to increase accuracy.

Abbreviation	Symbol
Three Dimensional Radiation Therapy	3D CRT
Intensity Modulated Radiation Therapy	IMRT
Dynamic Multi Leaf Collimator	DMLC
Static Multi Leaf Collimator	SMLC
Dose Volume Histogram	DVH
Mega Volt	MV
Clinical Target Volume	CTV
Planning Target Volume	PTV
Organ at Risk	OAR
Gray	Gy
Fraction	Fr
Computed Tomography	СТ
Treatment Planning System	TPS
Linear Accelerators	LINAC
Electronic Portal Imager Device	EPID
Digitally Reconstructed Radiograph	DRR
Prostate-Specific Antigen	PSA
Beam Eye View	BEV
Right	Rt
Left	Lt
Monitor Unit	MU
Clock Wise	CW
Counter Clock Wise	ccw
Dose Maximum	D _{max}

- Antolak JA, Rosen II. Planning target volumes for radiotherapy: how much margin is needed? Int J Radiat Oncol Biol Phys.1999;44:1165-1170.
- Ezzell G. Clinical implementation of IMRT report of the IMRT Subcommittee of the AAPM Radiation Therapy Committee. Med Physics. 2003;30:2089-2115.
- Pitchforth J, Nelson-White E, Van den Helder M, Oosting W. The work environment pilot: An experiment to determine the optimal office design for a technology company. PLoS One. 2020;15:e0232943.
- Bujold A, Craig T, Jaffray D, Dawson LA. Image-guided radiotherapy: has it influenced patient outcomes? Semin Radiat Oncol. 2012;22:50-61.
- Cordoba A, Nickers P, Tresch E, Castelain B, Leblanc E, et al. Safety
 of adjuvant intensity-modulated postoperative radiation therapy in
 endometrial cancer: Clinical data and dosimetric parameters according
 to the International Commission on Radiation Units (ICRU) 83 report.
 Reports of practical oncology and radiotherapy: J Great Poland Cancer
 Center in Poznan and Polish Society of Radiation Oncol. 2015;20:385392
- Gordon JJ, Siebers JV. Evaluation of dosimetric margins in prostate IMRT treatment plans. Med Physics. 2008;35:569-575.

- 7. Roy A, Das IJ, Nohadani O. On correlations in IMRT planning aims. J Appl Clin Med Phys. 2016;17:44-59.
- Motegi K, Kohno R, Ueda T, Shibuya T, Ariji T, et al. Evaluating positional accuracy using megavoltage cone-beam computed tomography for IMRT with head-and-neck cancer. J Radiat Res. 2014;55:568-574.
- Mehta P, Wang CH, Day A, Richardson C, Bukov M, et al. A high-bias, low-variance introduction to Machine Learning for physicists. Phy Report.2019;810:1-124.
- Naiyanet N, Oonsiri S, Lertbutsayanukul C, Suriyapee S. Measurements of patient's setup variation in intensity-modulated radiation therapy of head and neck cancer using electronic portal imaging device. Biomed imaging interv J. 2007;3:e30.
- Skarsgard D, Cadman P, El-Gayed A, Pearcey R, Tai P, et al. Planning target volume margins for prostate radiotherapy using daily electronic portal imaging and implanted fiducial markers. Radiation Oncol. 2010;5, 52
- Chaudhry JH, Estep D, Tavener S, Carey V, Sandelin J. A posteriori error analysis of two stage computation methods with application to efficient discretization and the parareal algorithm. SIAM J Numer Anal. 2016;54:2974-3002.