
Oncology
and Radiotherapy ©
17 (1) 2023: 018-029 • REVIEW ARTICLE

− 18

Artificial intelligence, machine learning and deep learning in 
neuroradiology: Current applications

Danilo Caudo, Alessandro Santalco, Simona Cammaroto, Carmelo Anfuso, Alessia Biondo, Rosaria Torre , Caterina Benedetto, 
Annalisa Militi, Chiara Smorto, Fabio Italiano, Ugo Barbaro, Rosa Morabito

IRCCS Centro Neurolesi Bonino-Pulejo (Messina - ITALY)

AB
ST

RA
CT Artificial intelligence is rapidly expanding in all medical fields and especially 

in neuroimaging/neuroradiology (more than 5000 articles indexed on PubMed 
in 2021) however, few reviews summarize its clinical application in diagnosis 
and clinical management in patients with neurological diseases. Globally, 
neurological and mental disorders impact 1 in 3 people over their lifetime, 
so this technology could have a strong clinical impact on daily medical work. 
This review summarizes and describes the technical background of artificial 
intelligence and the main tools dedicated to neuroimaging and neuroradiology 
explaining its utility to improve neurological disease diagnosis and clinical 
management.
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INTRODUCTION

The ever-increasing number of diagnostic tests requires rapid 
reporting without reducing diagnostic accuracy [1], and this 
could lead to misdiagnosis. In this context, the recent exponential 
increase in publications related to Artificial Intelligence (AI) and 
the central focus on artificial intelligence at recent professional 
and scientific radiology meetings underscores the importance of 
artificial intelligence to improve neurological disease diagnosis 
and clinical management.

Currently, there are many well-known applications of AI in 
diagnostic imaging, however, few reviews summarized its 
applications in Neuroimaging/neuroradiology. Thus, we aim 
at providing a technical background of AI and an overview 
of the current literature on the clinical applications of AI in 
neuroradiology/neuroimaging highlighting current tools and 
rendering a few predictions regarding the near future.

Technical background of AI

Any computer technique that simulates human intelligence is 
considered AI. AI is composed of Machine Learning (ML) and 
Deep Learning (DL) (Figure 1). ML designs systems to learn 
and improve from experience without being preprogrammed 
based on statistical data using computer technology. ML uses 
observations and data which are taken as examples to create 
some models and algorithms which are then used to make future 
decisions. In ML, some “ground truth” exists, which is used 
to train the algorithms. One example is a collection of brain 
CT scans that a neuroradiologist has classified into different 
groups (ie, haemorrhage versus no haemorrhage). The goal is to 
design software to learn automatically and independently of any 
human intervention or assistance for further intended decisions 
(Figure 2). DL, representing ML processing, instead applies 
artificial Convolutional Neural Networks (CNNs) to accelerate 
the learning process [2, 3]. CNNs are non-linear structures of 
statistical data organized as modelling tools. They can be used to 
simulate complex relationships between inputs and outputs using 
several steps (layers) of nonlinear transformations, which other 
analytic functions cannot represent [2].

CNNs can be trained to classify an image based on its characteristics 
through the observation of different images. More specifically, 
DL can identify common features in different images to use them 
as a classification model. For example, DL can be trained to find 
common features in variable images with and without a given 
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pathology to discriminate between both entities. Consequently, 
it is possible to determine a specific diagnosis without human 
intervention and therefore there is some potential to improve 
both the time efficiency and th e productivity of ra diologists. A 
strength of DL is that its learning is based on growing experience. 
As a result, DL has enormous potential because it could update 
its response models by collecting data from large databases such 
as the Internet or the Picture Achieving and Comunication 
System (PACS). However, a limit is that as a consequence, 
algorithm performance depends largely on both the quantity and 
quality of data on which it is trained [4]. For example, an 
algorithm for tumour detection trained on a data set in which 
there is no occipital tumour is likely to have a higher error rate 
for tumours in that location. For a more complete description of 
DL, the reader is directed to the paper by Montagnon et al. [5].

Image acquisition and image quality 
improvement
Deep learning methods can be used to perform 
image reconstruction and improve image quality. AI can "learn" 
standard MR imaging reconstruction techniques, such as 
Cartesian and non-Cartesian acquisition schemes [6]. 
Additionally, deep learning methods could be applied to 
improve image quality. If low and high-resolution images are 
available, a deep mesh can be used to improve the resolution 
[7]. This has already been applied to CT imaging to improve 
resolution in low-dose CT images [8]. Another approach to 
improve image quality is to use MR images acquired at different 
magnetic fi e ld strengths a nd co u pled f rom the same anatomy 
[9].

AI is also able to reduce image acquisition times, this is especially 
useful in the case of DTI sequences, where the need for 
more angular directions extends the examination beyond what 
many patients can tolerate. A deep learning approach can 
reduce imaging duration by 12 times by predicting final 
parameter maps (fractional anisotropy, mean diffusivity, and 
so on) from relatively few angular directions [10]. There a re 
a lso s tudies i n which DL has increased the signal-to-noise ratio 
in Arterial Spin-Labelling (ASL) sequences to improve image 
quality [11]. Finally, some applications of AI could improve 
resolution and image enhancement by providing a better 
resolution and signal-to-noise ratio reducing the dose of 
contrast needed to provide diagnostic images [2].

Clinical AI applications in neuroradiology/
neuroimaging

Recently, 37 AI applications were reviewed in the domain 
of Neuroradiology/Neuroimaging from 27 vendors offering 
111 functionalities [12]. These AI functionalities mostly 

support radiologists and extend their tasks. Interestingly, 
these AI applications are designed for just one pathology, such 
as ischemic stroke (35%), intracranial haemorrhage (27%), 
dementia (19%), multiple sclerosis (11%), or brain tumour 
(11%) to mention the most common [12]. In our review, we 
found miscellaneous clinical applications of AI in 
neuroradiology/neuroimaging ranging from the detection and 
classification of anomalies on imaging to the prediction of 
outcomes with disease quantification by estimating the volume 
of anatomical structures, the burden of lesions, and the 
volume of the tumour. In particular, regarding detecting 
tools, primary emphasis has been placed on identifying urgent 
findings that enable worklist prioritization for abnormalities 
such as intracranial haemorrhage [13-19], acute infarction 
[20-23], large-vessel occlusion [24, 25], aneurysm detection 
[26-28], and traumatic brain injury on non-contrast head CT 
[29-31] .

Other AI detecting tools are in brain degenerative disease, 
epilepsy, oncology, degenerative spine disease (to detect the size  
of the spinal canal, facet joints alterations, disc herniations, size 
of conjugation foramina, and in scoliosis the Cobb angle), 
fracture  detection (vertebral fracture such as compression 
fracture), and  in multiple sclerosis to identify disease burden 
over time and predicting disease activity. In glioma, some DL 
algorithms were tested to predict glioma genomics [32-36] 

Regarding segmentation tools, we found tools able to 
segment vertebral disc, vertebral neuroforamina, and vertebral 
body for degenerative spine disease, brain tumour volume in 
the neuro-oncological field, and white and grey matter in 
degenerative brain diseases.

In the following paragraphs, we report the main diseases where 
AI is useful with the more significant relative studies.

Intracranial haemorrhage:
Intracranial haemorrhage detection has been widely studied 
as a potential clinical application of AI [37-39], able to 
work as an early warning system, raise diagnostic confidence 
[40], and classify haemorrhage types [41]. In particular, in 
these studies, Kuo et al. developed a robust haemorrhage 
detection model with an area under the receiver operating 
characteristic curve (ROC-AUC) of 0.991 [14]. They trained 
a CNN on 4396 CT scans for classification and segmentation 
concurrently on training data which were labelled pixel-wise by 
attending radiologists. Their test set consisted of 200 CT scans 
obtained at the same institution at a later time. They report a 
sensitivity of 96% and a specificity of 98%.

Ker et al. developed a 3-Dimensional (3D) 
Convolutional Neural Network (CNN) model to detect 4 
types of intracranial haemorrhage (subarachnoid 
haemorrhage, acute subdural haemorrhage, 
intraparenchymal hematoma, and brain polytrauma 
haemorrhage) [41]. They used a data set consisting of 399 
locally acquired CT scans and experimented with data 
augmentation methods as well as various threshold levels (i.e, 
window levels) to achieve good results. They measured 
performance as a binary comparison between normal and 
one of the 4 haemorrhage types and achieved ROC-AUC 
values of 0.919 to 0.952. The RSNA 2019 Brain CT 
Hemorrhage Challenge was another milestone, in which a 
data set of 25 312 brain CT scans were expert-annotated and 
made available to the public [42]. The scans were sourced from 3 
institutions with different scanner hardware 

Fig. 1. AI uses computers to mimic human intelligence 
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to 13% of aneurysms in the internal and external test data sets 
(Figure 2). In another study, Faron et al., trained and evaluated a 
CNN model on a data set of TOF-MRA scans on 85 patients. 
CNN achieved 90% sensitivity with a rate of 6.1 false positives 
per case [45]. Similarly, Nakao et al. trained a CNN on a data 
set of 450 patients with TOF-MRA scans on 3-Tesla magnets 
only [46]. They were able to achieve a better result at 94% 
sensitivity with 2.9 false positives per case. Yang et al. used a 
different approach, in which they produced 3D reconstructions 
of the intracranial vascular tree using TOF-MRA images [47]. 
They annotated aneurysms on the 3D projections and used 
them to train several models. In this manner, they achieved 
a good discriminatory result between healthy vessels and 
aneurysms.

Stroke: 

In stroke imaging 3 components of stroke imaging are 
explored: Large Vessel Occlusion (LVO) detection (Figure 3), 
automated measurement of core infarct volume and the 
Alberta Stroke 

and acquisition protocols. The submitted models were evaluated 
using logarithmic loss, and top models achieved excellent results 
on this metric (0.04383 for the first-place model). However, it 
is difficult to  di re ctly co mp are th is  re su lt to  other st ud ies th at  
utilize the ROC-AUC of haemorrhage versus no haemorrhage 
as their performance metric. Approved commercial software for 
haemorrhage detection now exist on the market and has been 
evaluated in clinical settings. Rao et al. evaluated Aidoc (version 
1.3, Tel Aviv) as a double reading tool for the prospective review 
of radiology reports [40]. They assessed 5585 non-contrast CT 
scans of the head at their institutions which were reported as being 
negative for haemorrhage and found 16 missed haemorrhages 
(0.2%), all of which were small haemorrhages. The software al so 
flagged 12 false positives. Th e Ai do c software was  als o tes ted as 
a triage tool by Ginat in which the software, evaluating 2011 
non-contrast CT head scans, contained both false positive and 
false negative findings of haemorrhage [13]. Th e st ud y re po rts 
sensitivity and specificity of 88.7% and 9 4 .2% for haemorrhage 
detection, respectively. The author however described a benefit 
of false-positive flags for haemorrhage as these studies sometimes 
contained other hyperattenuating pathologies. On the flip side, the 
author reports a drawback in flagging in patient scans in which a 
haemorrhage is stable or even improving, which may unnecessarily 
prioritize nonurgent findings.

Aneurysm detection:

Detecting unruptured intracranial aneurysms has significant 
clinical importance considering that they account approximately 
for 85% of non-traumatic subarachnoid haemorrhages and their 
prevalence is estimated at approximately 3% [43]. MRI with Time-
Of-Flight Angiography sequences (TOF-MRA) is the modality 
of choice for aneurysm screening, as it does not involve ionizing 
radiation nor intravenous contrast agents. Deep learning has been 
used to detect aneurysms on TOF-MRA. Published methods 
demonstrate high sensitivity but poor specificity, resulting in 
multiple false positives per case. Although this fact necessitates a 
close review of all aneurysms flagged by the software, the resulting 
models may nevertheless be useful as screening tools. Ueda et al. 
[44], tested a DL model on 521 scans from the same institution as 
well as 67 scans from an external data set. DL model achieved 
91% to 93% sensitivity with a rate of 7 false positives per 
scan[44]. Despite the high false positive rate, the authors 
found that this model helped them detect an additional 4.8% 

Fig. 2. Automated Aneurysm detection on time-of-flight MRI.Ueda et al. [44]

Fig. 3. Brainomix e-CTA tool demonstrating identification and localization of 
an LVO of the right MCA, collateral score and collateral vessel attenuation, 
and a heat map of the collateral deficit (orange)

Fig. 4. A 74-year-old with a right-sided stroke due to MCA occlusion a) Two 
neuroradiologists assessed ASPECTS of 9 on the initial CT images b) Rapid 
aspects software evaluation is 4 on the same initial CT images

Fig. 5. AI mobile interface showing a left MCA territory infarction with a 
mismatch on perfusion CT [59]
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Program Early CT Score (ASPECTS) (Figure 4), and infarct 
prognostication (Figure 5).

The timely detection of STROKE is critical in brain ischemic 
treatment, in this context AI has shown the potential in reducing 
the time to diagnosis. In particular, there are some AI applications 
able to detect LVO. You et al. developed an LVO detection model 
using clinical and imaging data (non-contrast CT scans of the 
head) [48]. AI detects the hyperdense Middle Cerebral Artery 
(MCA) sign which is a finding suggestive of the presence of an 
MCA thrombus. The AI, based on the U-Net architecture, was 
trained and tested on a local data set of 300 patients. It achieved 
a sensitivity and specificity of 68.4% and 61.4%, respectively. 
On NCCT, an SVM algorithm detected the MCA dot sign in 
patients with acute stroke with high sensitivity (97.5%) [49]. A 
neural network that incorporated various demographic, imaging, 
and clinical variables in predicting LVO outperformed or equalled 
most other prehospital prediction scales with an accuracy of 0.820 
[50]. A CNN-based commercial software, Viz-AI-Algorithm 
v3.04, detected proximal LVO with an accuracy of 86%, a 
sensitivity of 90.1%, a specificity of 82.5, AUC of 86.3% (95% CI, 
0.83-0.90; P # .001), and intraclass correlation coefficient (ICC) 
of 84.1% (95% CI, 0.81-0.86; P # .001), and Viz-AI-Algorithm 
v4.1.2 was able to detect LVO with high sensitivity and specificity 
(82% and 94%, respectively) [51]. Unfortunately, no study has 
yet shown whether AI methods can accurately identify other 
potentially treatable lesions such as M2, intracranial ICA, and 
posterior circulation occlusions.

Establishing infarct volumes is important to triage patients 
for appropriate therapy. AI has been able to establish core 
infarct volumes on MRI sequences through automatic lesion 
segmentation [52-54]. One reported limitation was the reliance 
on FLAIR and T1 images that do not fully account for the 
timing of stroke occurrence. Another limitation was a tendency 
to overestimate the volume of small infarcts and underestimate 
large infarcts compared with manual segmentation by expert 
radiologists and difficulty in distinguishing old versus new strokes 
[54]. Discrepancies in volumes were attributed to nondetectable 
early ischemic findings, partial volume averaging, and stroke 
mimics on CT [55]. 

ASPECTS is an important early predictor of infarct core for 
middle cerebral artery (MCA) territory ischemic strokes [56]. It 
assesses 10 regions within the MCA territory for early signs of 
ischemia and the resulting score ranges from 0 to 10, where 10 
indicates no early signs of ischemia, while 0 indicates ischemic 
involvement in all 10 regions. The score is currently a key 
component in the evaluation of the appropriateness of offering 
endovascular thrombectomy. Several commercial AI applications 
perform automated ASPECTS evaluation and they have been 
assessed in clinical settings. In particular, Goebel et al. compared 
Frontier ASPECTS Prototype (Siemens Healthcare GmbH) 
and e-ASPECTS (Brainomix) to 2 experienced radiologists and 
found that e-ASPECTS showed a better correlation with expert 
consensus [57]. Guberina et al. compared 3 neuroradiologists with 
e-ASPECTS and found that the neuroradiologists had a better 
correlation with infarct core as judged on subsequent imaging 
than the software [58]. Maegerlein et al. compared RAPID 
ASPECTS (iSchemaView) to 2 neuroradiologists and found that 
the software showed a higher correlation with expert consensus 
than each neuroradiologist individually [59]. An example output 

of RAPID ASPECTS is shown in Figure 2. Accuracy varies 
widely and depends on the software and chosen ground truth. 
An interesting result suggested by one study, however, was that 
the RAPID software produced more consistent results when the 
image reconstruction algorithm was varied compared to human 
readers [60]. The i nterclass c orrelation c oefficient bet ween 
multiple reconstruction algorithms was 0.92 for RAPID, 0.81 to 
0.84 for consultant radiologists, and 0.73 to 0.79 for radiology 
residents.

Prognostication in Stroke treatment is critical to detect patients 
who are most likely to benefit f rom t reatment c onsidering t he 
risks related. For this reason, AI has been studied as a tool for 
predicting post-treatment outcomes. In this context developed 
a CNN model to predict post-treatment infarct core based on 
initial pre-treatment Magnetic Resonance Imaging (MRI) [23]. 
The authors used a locally acquired data set of 222 patients, 
187 of whom were treated with tPA. The model was evaluated 
using a modified version of the ROC-AUC, where the true 
positive rate was set to the number of voxels correctly identified 
as positive, the true negative rate was set to the number of voxels 
correctly identified as negative, and so on. The reported modified 
ROC-AUC is 0.88. In another study, Nishi et al. developed 
a U-Net model to predict clinical post-treatment outcomes 
using pretreatment diffusion-weighted i maging o n p atients w ho 
underwent mechanical thrombectomy [61]. The clinical outcome 
was defined using the modified Ra nkin Sc ale (mRS) at  90 da ys 
after the stroke. The outcomes were categorized as ‘‘good’’ (mRS 
< 2) and ‘‘poor’’ (mRS > 2). After training on a data set of 250 
patients, the model was validated on a data set of 74 patients and 
found to have a ROC-AUC of 0.81.

Multiple sclerosis:

In multiple sclerosis deep learning has been investigated as a tool to 
estimate disease burden and predict disease activity through MRI 
imaging. MRI is used to assess disease burden over time but this 
requires comparison with prior scans, which can be burdensome 
and error-prone when the number of lesions is large. Nair et al. 
evaluated a DL algorithm for MS lesion identification on a private 
multicenter data set of 1064 patients diagnosed with the relapsing-
remitting variant, containing a total of 2684 MRI scans. In this 
study, the DL performance was worst with small lesions [62]. The 
algorithm was tested on 10% of the data set where it achieved a 
ROC-AUC of 0.80 on lesion detection. In another study, Wang 
et al. trained a CNN on 64 Magnetic Resonance (MR) scans to 
detect MS lesions which were able to achieve a sensitivity of 98.77% 
and specificity of 98.76% for lesion detection, respectively [63].

Regarding predicting disease activity, Yoo et al. developed a CNN 
that combined a data set of 140 patients, who had onset of the first 
demyelinating symptoms within 180 days of their MR scan, with 
defined clinical measurements [64]. CNN achieved a promising 
result with a ROC-AUC of 0.746 for predicting progression to 
clinically definite MS.

Another application of AI in MS regards efforts made to reduce 
gadolinium use where possible considering emerging evidence 
that repeated administrations of gadolinium-based contrast agents 
lead to their deposition in the brain [65]. In particular, Narayana 
et al. [66] used DL to predict lesion enhancement based on their 
appearance on non-contrast sequences (precontrast T1-weighted 
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imaging, T2-weighted imaging, and fluid-attenuated inversion 
recovery) (Figure 6). They used a data set of 1008 patients 
with 1970 MR scans acquired on magnets from 3 vendors. DL 
achieved a ROC-AUC of 0.82 on lesion enhancement prediction, 
suggesting that this approach may help reduce contrast use.

Fracture detection:

Regarding fracture detection tools we found that Tomita et al. 
tested a DL model to detect osteoporotic vertebral fractures in a 
data set of 1432 CT scans. The outcome was a binary classification 
of whether or not a fracture was present [67]. Using 80% of the 
data set for training, a ROC-AUC of 0.909 to 0.918 was achieved 
with an accuracy of 89.2%. This was found to be equivalent to 
radiologists on the same data set. In a similar study by Bar et al. a 
CNN was trained with a data set of 3701 CT scans of the chest 
and/or abdomen to detect vertebral compression fractures. The 
model was able to detect vertebral compression fractures with 
89.1% accuracy, 83.9% sensitivity, and 93.8% specificity [68]. 
Furthermore, [69] used a data set of 12 742 dual-energy X-ray 
absorptiometry scans to train a binary classifier for the detection 
of vertebral compression fractures (Figure 7); 70% of the data set 
was used for training, which yielded a ROC-AUC of 0.94. The 
optimal threshold achieved a sensitivity of 87.4% and a specificity 
of 88.4%.

Brain tumour:

For brain tumours there AI application for segmentation, that 
can be used as a stand-alone clinical tool, such as in contouring 
targets for radiotherapy, or it can also be used to extract tumours 
as a preliminary step for further downstream ML tasks, such as 
diagnosis, pre-surgical planning, follow-up and tumour grading 
[16, 70-74]. Unfortunately, there is a limit to the AI segmentation, 
usually, only a minority of voxels represent tumours and the 
majority represent healthy tissue, however, in a recently published 
study, Zhou et al. trained an AI model with a publicly available 
MRI data set of 542 glioma patients and they were able to tackle 

this limit [71]. Their results demonstrate excellent performance 
with a Dice score of 0.90 for the whole tumour (entire tumour and 
white matter involvement) and 0.79 for tumour enhancement.

Another AI clinical application for brain tumours is predicting 
glioma genomics Isocitrate Dehydrogenase (IDH) mutations that 
are important prognosticators [75, 76]. In 2019 multiple studies 
investigated the prediction of IDH mutation status from MRI. 
Zhao et al. published a meta-analysis of 9 studies totalling 996 
patients . The largest data set used for training had 225 patients. 
These studies developed binary classification models and ha d a 
ROC-AUC of 0.89 (95% CI: 0.86-0.92). Pooled sensitivities and 
specificities were 87% (95% CI:76-93) and 90% (95% CI:72-97), 
respectively. Since then, another study was published by Choi 
et al. [34] using a larger MRI data set of 463 patients. It showed 
excellent results with ROC-AUC, sensitivity, and specificity of 
0.95, 92.1%, and 91.5%, respectively. This model used a CNN to 
segment and as a feature extractor to predict IDH mutation risk. 
Haubold et al. used 18F-fluoro-ethyl-tyrosine Positron Emission 
Tomography (PET) combined with MRI to predict multiple 
tumour genetic markers using a data set of 42 patients before 
biopsy or treatment [77]. They trained 2 different classical ML  
models and used biopsy results as the ground truth. They achieved 
a ROC-AUC of 0.851 for predicting the ATRX mutation, 0.757 
for the MGMT mutation, 0.887 for the IDH1 mutation, and 
0.978 for the 1p19q mutation.

Degenerative brain disease:

Regarding dementias numerous AI networks have been trained 
from large longitudinal datasets such as the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI), resulting in many diagnostic 
DL tools for Alzheimer's Disease (AD), such as models using 
18F  Fluoro-Deoxy-Glucose (FDG) PET76 and structural MRI 
of the hippocampus to predict AD onset from 1 years to 6 years 
in advance [78]. Furthermore, AI may assist in the diagnosis 
of dementia types. AI can differentiate AD from Lewy body 

Fig. 6. Examples of images input to the network (T2-weighted, fluid-
attenuated inversion recovery and pre-contrast T1-weighted images). 
Post-contrast T1-weighted images demonstrating areas of true-positive 
(white arrow) and false-negative (black arrow) enhancement are shown for 
comparison [66]

Fig. 7. Images of a 77-year-old female patient evaluated for vertebral fracture. 
Hear map shows one severe vertebral compression fracture (upper arrow) 
and one mild fracture (lower arrow). Heat maps are unitless low-resolution 
images showing relative contributions of general areas in images to the 
prediction. The heat map has been overlaid on the original vertebral fracture 
assessment image (left side). Arrows denote the corresponding locations of 
vertebral fractures on the original images as presented to the convolutional 
neural network (right side)[69]
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and Parkinson’s dementia [32]. Similarly, other AI tools can 
differentiate between Mild Cognitive Impairment (MCI) and 
AD [79]. In addition to diagnosis, AI can also probe 
neurobiology. New ML techniques such as Subtype and Stage 
Inference have provided novel neuroimaging and genotype data-
driven classifications of diagnostic subtypes and progressive 
stages for AD and Fronto Temporal Dementia (FTD). SuStaIn 
has localized distinct regional hotspots for atrophy in different 
forms of familial FTD caused by mutations in genes [80]. 

In other studies, DL has integrated MRI, neurocognitive, and 
APOE genotype information to predict conversion from MCI 
to AD [81]. Combining several AI systems (including structural 
MRI and amyloid PET) may augment the diagnosis and 
management of the complex natural history of AD. In the 
future, the integration of AI tools for imaging with AI systems 
designed to examine serum amyloid markers mortality 
prediction from clinicians’ progress notes and assessments of 
cognition, and postmortem immunohistochemistry images 
[82-85], may improve many facets of care in neurodegenerative 
disease. In Huntington's Disease, an autosomal dominant 
movement disorder, diagnosis, and management may be 
enhanced by incorporating CAG repeat length data with CNN 
developed for caudate volumetry, and objective gait assessment 
[86]. Such multi-approaches may improve risk stratification, p 
rogression m onitoring, a nd c linical management in patients 
and families.

Epilepsy:

The use o f A I i n the d iagnosis o f e pilepsy c ould i mprove the 
diagnostic capabilities of this condition as the symptoms are not 
specific and often overlap with other conditions[87 ,88]. In 
particular, the integration of anamnestic, clinical, 
electroencephalographic and imaging information is 
fundamental for an accurate diagnosis and subtype 
differentiation [89]. Neuroimaging plays an important role in 
both diagnosis and follow-up and prognosis. In particular, 
structural Magnetic Resonance Imaging (sMRI) can help 
identify cortical abnormalities (e.g. temporal mesial sclerosis, 
Focal Cortical Dysplasia [FCD], neoplasms, etc.), while 
functional Magnetic Resonance Imaging (fMRI), emission 
tomography positron imaging and Magneto-Encephalo-Graphy 
(MEG) can help localize brain dysfunction.

Park et al. (2020) used an SVM classifier on bilateral 
hippocampi [90]. The model obtained an area under the 
receiver operating characteristic curve (AUC) of 0.85 and an 
accuracy of 85% in differentiating e pileptic p atients f rom 
h ealthy c ontrols, b etter than human evaluators. Mesial 
sclerosis is often subtle and invisibile. Such cases can lead to 
a misdiagnosis and consequently delay the surgical treatment. 
Therefore, recent machine learning models have been 
proposed to identify MRI-negative patients and lateralize 
foci. For example, Mo et al. (2019) used an SVM classifier 
based o n clinically e mpirical f eatures, a chieving 8 8% 
accuracy in detecting MRI-negative patients and an AUC of 
0.96 in differentiating MRI-negative patients from controls 
[91]. The most important feature was the degree of blurring 
of the grey-white matter at the temporal pole. Similarly, 
Beheshti et al. (2020) used an SVM to diagnose epileptic 
patients for mesial sclerosis and lateralize foci in a cohort of 
42 MRI-negative PET-positive patients [92]. Focusing on 
FLAIR, a simple and widely available sequence, the authors 

extracted signal strength from Regions Of Interest (ROIs) a 
priori. The model achieved 75% accuracy in differentiating 
right and left epileptics from controls. The best performance 
was obtained in identifying right epilepsy, with an accuracy of 
88% and an AUC of 0.84. The most important ROIs were the 
amygdala, the inferior, middle and superior temporal gyrus 
and the temporal pole.

However, analyzing only the temporal lobes may not 
reveal a more global pathology, for this reason, 
Sahebzamani et al. (2019), using unified segmentation and an 
SVM classifier, found that whole brain features are more 
diagnostic than hippocampal features alone (94% vs 82% 
accuracy) [93]. In particular, global contrast and white matter 
homogeneity were found to be the most important, along with 
the clustering tendency and grey matter dissimilarity. In 
particular, the best performances were obtained based on the 
mean sum of the whole brain’s white matter.

Another possibility of AI on sMRI is to lateralize the 
temporal epileptic focus. In a study with an SVM, the 
combination of hippocampus, amygdala, and thalamic 
volumes was more predictive of the laterality of the epileptic 
focus. The combined model achieved 100% accuracy in 
patients with mesial sclerosis (Mahmoudi et al., 2018) [94]. 
Furthermore, Gleichgerrcht et al. (2021) used SVM deep 
learning models to diagnose and lateralize temporal epileptic 
focus based on structural and diffusion-weighted MRI ROI 
data [95]. The models achieved an accuracy of 68%-75% in 
diagnosis and 56%-73% in lateralization with diffusion data. 
Based on the sMRI data, ipsilateral hippocampal volumes were 
the most important for prediction performance. Based on 
the dwMRI data, ipsilateral tracked beams had the highest 
predictive weight.

Machine learning techniques have also been used to 
diagnose cortical dysplasia, the most common cause of medically 
refractory epilepsy in children and adults second most common 
cause (Kabat and Król, 2012) [96]. In one study, Wang et al. 
(2020) trained a CNN to exploit the differences in texture and 
symmetry on the boundary between white matter and grey 
matter (Figure 8) [97]. The model achieved a diagnostic 
accuracy of 88%. Similarly, Jin et al. (2018) trained surface-
based morphometry and a non-linear neural network model 
[98]. Based on six characteristics of a 3D cortical 
reconstruction, the model achieved an AUC of 0.75. The 
contrast of intensity between grey matter and white matter, 
local cortical deformation and local cortical deformation of 
cortical thickness were the most important factors for 
classification. Notably, the model worked well in three 
independent epilepsy centres. However, data extraction 
limits have been reported regarding variations in image 
quality between different clinical sites of the tests.

Another possibility is to combine features derived from sMRI 
with those derived from fMRI for a variety of clinical 
applications, such as diagnosing epilepsy and predicting the 
development of epilepsy following traumatic events. In one 
study, Zhou et al. (2020) found that the combination of fMRI 
and sMRI functions was more useful than either modality 
alone in identifying epileptic patients [99]. In another study, 
Rocca et al. (2019) used random forest and SVM models to 
help predict the development of seizures following temporal 
brain injuries [100]. The highest AUC of 0.73 was achieved 
with a random forest model using functional characteristics. 
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In summary, fMRI-based machine learning can be used to identify 
complex alterations in functional neural networks in the epileptic 
brain and further exploit these differences for classification 
purposes. In many cases of epilepsy, structural and functional 
anomalies of the network probably coexist. Current machine 
learning models with fMRI are limited by small sample sizes, 
probably because there are few publicly available data sets. 
However, fMRI is increasingly being integrated into routine 
clinical practice, particularly for lateralization before surgery 
[106]. Recent studies have shown that fMRI may be specifically 
useful in pre-surgical lateralization [107]. With technological 
advances and further methodological refinements, fMRI could 
become the standard of care in epilepsy and AI will be increasingly 
used to assist in diagnostic and prognostic tasks.

Another field of AI application is Diffusion Tensor Imaging 
(DTI), which has advantages in detecting subtle structural 
abnormalities of epileptogenic foci. Machine learning in DTI can 
use for classification improving the diagnosis and treatment of 
epilepsy, particularly when used for pre-surgical planning and post-
surgical outcome prediction [108].

Degenerative Spine Disease: 

The rate of MRI examinations is stressfully increased due to the 
significant number of patients suffering from degenerative spine  
disease [109]. Consequently, radiologists face a work overload who  
need to evaluate numerous parameters (size of the spinal canal, 
facet joints, disc herniations, size of conjugation foramina, etc)  in 
all spinal levels in a short time. Accordingly, different DL and ML 
algorithms that can automatically classify spinal pathology may 
help to reduce patient waiting lists and examination costs. In  this 
context, Jamaludin et al. evaluated an automatic disc disease 
classification system that yielded an accuracy of 96% compared  to 
radiologist assessment. Notably, the main sources of limitation 
were either poor scan quality or the presence of transitional 
lumbosacral anatomy [109]. Furthermore, Chen et al. evaluated a 
DL tool to measure Cobb angles in spine radiographs for patients 
with scoliosis. They used a data set of 581 patients and were able to 
achieve a correlation coefficient of r ¼ 903 to 0.945 between the 
DL-predicted angle and the ground truth. [110]

Regarding spine segmentation, some models have been developed 
with good results. Huang et al. achieved intersection over-union  
scores of 94.7% for vertebrae and 92.6% for disc segmentations  on 
sagittal MR images using a training set of 50 subjects and a test set 
of 50 subjects [111]. Whitehead et al. trained a cascade of CNNs 
to segment spine MR scans using a data set of 42 patients for 
training and 20 patients for testing. They were able to achieve  
Dice scores of 0.832 for discs and 0.865 for vertebrae [112]. In  
this context DL has been used to answer research questions, for  
example, Gaonkar et al. used DL to look for potential correlations 
between the cross-sectional area of neural foramina and patient 
height and age, showing that the area of neural foramina is directly  
correlated with patient height and inversely correlated with 
age [35] (Figure 9).

AI tools for ultrasound in neuroimaging 

AI applications in neuroimaging and ultrasound (US) are mostly 
focused on the identification of anatomical structures such as 
nerves. A large number of algorithms have shown to be able to 
segment US images for these aims. For example, Kim et al. 
developed a neural network that accurately and effectively 
segments the median nerve. To train the algorithm and evaluate

Fig. 8. An example of FCD detection a) an axial slice with FCD lesion labelled 
in red b) patch extraction results c) classification results and numbers stand 
for probabilities of being FCD patches d) detection mapped onto the 
inflated cortical surface (shown in yellow) [97] 

Therefore, additional studies that directly compare the additive 
utility of fMRI and sMRI, perhaps using framework models, 
may be useful.

In summary, a variety of machine learning approaches have 
been used for the automated analysis of sMRI data in epilepsy. 
Given the limited number of publicly available sMRI datasets, 
models tend to be trained on small single-centre cohorts, this 
and the lack of external validation limits the interpretation of 
widespread clinical utility. Future work with larger, 
multicenter data sets is needed.

Functional MRI, a method that measures changes in blood flow to 
assess and map the magnitude and temporospatial characteristics 
of neural activity, is gaining popularity in the field of epilepsy 
[101]. A growing body of evidence suggests that epilepsy is 
likely characterized by complex and dynamic changes in the 
way neurons communicate (i.e., changes in neural networks and 
functional connectivity), both locally and globally. AI applied 
to fMRI is useful in recent epilepsy studies. Mazrooyisebdani et 
al. (2020) used an SVM to diagnose temporal epilepsies based 
on functional connectivity characteristics derived from graph 
theory analysis [102]. The model achieved an accuracy of 81%. 
Similarly, Fallahi et al. (2020) constructed static and dynamic 
matrices from fMRI data to derive measurements of global graphs 
[33]. Then, the most important characteristics were selected 
using random forest and the classification was performed with 
SVM. The use of dynamic features led to better accuracy than 
the use of static features (92% versus 88%) in the lateralization 
of temporal epilepsy. In another study, Hekmati et al. (2020) 
used fMRI data to quantify mutual information between 
different cortical regions and insert these quantities into a four-
layered perceptual classifier [103]. The model achieved 89% 
accuracy in locating seizure foci. Finally, Hwang et al. (2019) 
used LASSO feature selection to extract functional 
connectivity features, which were then used to train an SVM, 
linear discriminant analysis, and naive Bayes classifier to 
diagnose temporal epilepsy [104]. The best accuracy of 85% was 
achieved with the SVM model. Recent work by Bharat et al. 
(2019) with machine learning provided further evidence that 
epilepsy arises from impaired functional neural networks. 
Using resting-state fMRI (rs-fMRI), the researchers were able 
to identify connectivity networks specific to temporal epilepsy 
[105]. The model differentiated temporal epilepsy patients 
from healthy controls with 98% accuracy and 100% 
sensitivity. The networks were also found to be highly 
correlated with disease-specific clinical features and 
hippocampal atrophy. Although this evidence provides new proof 
of concept for the existence of specific epilepsy networks, future 
work is needed, as impaired functional activity can occur 
secondary to the effects of antiepileptic drugs or a variety of other 
confounding factors.
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the model, 1,305 images of the median nerve of 123 normal 
subjects were used [113]. However, the proposed neural network 
yielded more accurate results in the wrist datasets, rather than 
forearm images, with a precision respectively of 90.3% and 87.8%. 
Different studies showed that AI may help to automatically 
segment nerve and blood vessels to facilitate ultrasound-guided 
regional anaesthesia [114–116]. Automated medical image 
analysis can be trained to recognize the wide variety of appearances 
of the anatomical structures and could be used to enhance the 
interpretation of anatomy by facilitating target identification (e.g., 
peripheral nerves and fascial planes) [117, 118]. For example, a 
model has been well developed for peripheral nerve block in the 
adductor canal. In this model, the sartorius and adductor longus 
muscles, as well as the femur, were first identified as landmarks. 
The optimal block site is chosen as the region where the medial 
borders of these two muscles align. The femoral artery is labelled 
as both a landmark and a safety structure. The saphenous nerve 
is labelled as a target. AI-applications assist the operator in 
identifying the nerve and the correct target site for the block 
(Figure 10) [118-120]. 

CONCLUSIONS 

This review explores important recent advances in ML and DL 
within neuroradiology. There have been many published studies 
exploring AI applications in neuroradiology, and the trend 

is accelerating. AI applications may cover multiple fields of 
neuroimaging/neuroradiology diagnostics, such as image quality 
improvement, image interpretation, classification of disease, and 
communication of salient findings to patients and clinicians. The 
DL tools show an outstanding ability to execute specific tasks at 
a level that is often compared to those of expert radiologists. In 
this context, AI may indeed have a role in enhancing radiologists’ 
performance through a symbiotic interaction which is going 
to be more likely mutualistic. However, the existing AI tools in 
neuroradiology/neuroimaging have been trained for single tasks 
so far. This means that an algorithm trained to detect stroke would 
not be able to show similar accuracy to detect and classify brain 
tumours and vice-versa. This is a great limit since patients often 
suffer from multiple pathologies, a complete AI assessment that 
integrates all different algorithms would be favourable. As far as 
we know, ML or DL models which are capable of simultaneously 
performing multiple interpretations have not yet been reported. 
We believe that this technology development may represent the 
key requirement to shift AI from an experimental tool to an 
indispensable application in clinical practice. AI algorithms for 
combined analysis of different pathologies should also warrant an 
optimized and efficient 

integration into the daily clinical routine. Furthermore, rigorous 
validation studies are still needed before these technological 
developments can take part in clinical practice, especially for 
imaging modalities such as MRI and CT, for which the accuracy 
of DL models highly depends on the type of scanner used and 
protocol performed. In addition, the reliability of AI techniques 
requires the highest validation also considering the legal liabilities 
that radiologists would hold for their usage and results. 

Nowadays, only specific DL applications have demonstrated 
accurate performance and may be integrated into the clinical 
workflow under the supervision of an expert radiologist. In 
particular, AI algorithms for intracranial haemorrhage, stroke, and 
vertebral compression fracture identification may be considered 
suitable for application in daily clinical routines. 

Other tasks, such as glioma genomics identification, stroke 
prognostication, epilepsy foci identification and predicting 
clinically definite MS, have shown significant progress in the 
research domain and may represent upcoming clinical applications 
in the not-so-distant future.

However, the majority of AI algorithms show that there is still a 
range of inaccuracies for example in labelling anatomical structures, 
especially in the context of atypical or complex anatomy. Moreover, 
another challenge will be to ensure the presence of highly skilled 
practitioners, since machine learning systems are not guaranteed 
to outperform human performance and these systems should not 
be relied upon to replace the knowledge of doctors. 

Probably, the ongoing development of DL in neuroradiology/
neuroimaging will significantly influence the work of future 
radiologists and other specialists, which will need a specific 
AI education to begin during residential training, to deeply 
understand the mechanisms and potential pitfalls. Furthermore, 
knowledge of AI could be an opportunity to improve training 
in radiology and other specialities. AI can assign specific cases to 
trainees based on their training profile, to promote consistency 
in the trainees' individual experiences, and, in the context of 
anaesthetic procedures, to facilitate an easier understanding of 

Fig. 9. A random sample of automated neural foraminal segmentations 
used for generating measurements. Original MRI Images (left) and overlaid 
computer-generated segmentation(right)

Fig. 10. Sono-anatomy of the adductor canal block a) Illustration showing a 
cross-section of the mid-thigh b) Enlarged illustration of the structures seen 
on ultrasound during performance adductor canal block c) Ultrasound view 
during adductor canal block d) Ultrasound view labelled by AnatomyGuide 
[121]
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anatomy.
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